Abstract:
A wafer level method of making a micro-electronic and/or micro-mechanic device, having a capping with electrical wafer through connections (vias), comprising the steps of providing a first wafer of a semiconductor material having a first and a second side and a plurality of holes and/or recesses in the first side, and a barrier structure extending over the wafer on the second side, said barrier comprising an inner layer an insulating material, such as oxide, and an outer layer of another material. Then, metal is applied in said holes so as to cover the walls in the holes and the bottom of the holes. The barrier structure is removed and contacts are provided to the wafer through connections on the back-side of the wafer. Bonding structures are provided on either of said first side or the second side of the wafer. The wafer is bonded to another wafer carrying electronic and micro-electronic/mechanic components, such that the first wafer forms a capping structure covering the second wafer. Finally the wafer is singulated to individual devices.
Abstract:
The invention relates to a layered micro-electronic and/or micro-mechanic structure, comprising at least three alternating electrically conductive layers with insulating layers between the conductive layers. There is also provided a via in a first outer layer, said via comprising an insulated conductive connection made of wafer native material through the layer, an electrically conductive plug extending through the other layers and into said via in the first outer layer in order to provide conductivity through the layers, and an insulating enclosure surrounding said conductive plug in at least one selected layer of said other layers for insulating said plug from the material in said selected layer. It also relates to micro-electronic and/or micro-mechanic device comprising a movable member provided above a cavity such that it is movable in at least one direction. The device has a layered structure according to the invention. Methods of making such a layered MEMS structure is also provided.
Abstract:
The invention relates to a layered micro-electronic and/or micro-mechanic structure, comprising at least three alternating electrically conductive layers with insulating layers between the conductive layers. There is also provided a via in a first outer layer, said via comprising an insulated conductive connection made of wafer native material through the layer, an electrically conductive plug extending through the other layers and into said via in the first outer layer in order to provide conductivity through the layers, and an insulating enclosure surrounding said conductive plug in at least one selected layer of said other layers for insulating said plug from the material in said selected layer. It also relates to micro-electronic and/or micro-mechanic device comprising a movable member provided above a cavity such that it is movable in at least one direction. The device has a layered structure according to the invention. Methods of making such a layered MEMS structure is also provided.
Abstract:
A method of making a deflectable, free hanging micro structure having at least one hinge member, the method includes the steps of providing a first sacrificial wafer having a single crystalline material constituting material forming the micro structure. A second semiconductor wafer including necessary components for forming the structure in cooperation with the first wafer is provided. Finite areas of a structured bonding material is provided, on one or both of the wafers at selected locations, the finite areas defining points of connection for joining the wafers. The wafers are bonded using heat and optionally pressure. Sacrificial material is etched away from the sacrificial wafer, patterning the top wafer by lithography is performed to define the desired deflectable microstructures having hinges, and subsequently silicon etch to make the structures.
Abstract:
The invention relates in a general aspect to a method of making vertically protruding elements on a substrate, said elements having a tip comprising at least one inclined surface and an elongated body portion extending between said substrate and said tip. The method comprises an anisotropic, crystal plane dependent etch forming said inclined surface(s); and an anisotropic, non crystal plane dependent etch forming said elongated body portion; combined with suitable patterning processes defining said protruding elements to have a predetermined base geometry.
Abstract:
A sealing and bonding material structure for joining semiconductor wafers having monolithically integrated components. The sealing and bonding material are provided in strips forming closed loops. There are provided at least two concentric sealing strips on one wafer. The strips are laid out so as to surround the component(s) on the wafers to be sealed off when wafers are bonded together. The material in the strips is a material bonding the semiconductor wafers together and sealing off the monolithically integrated components when subjected to force and optionally heating. A monolithically integrated electrical and/or mechanical and/or fluidic and/or optical device including a first substrate and a second substrate, bonded together with the sealing and bonding structure, and a method of providing a sealing and bonding material structure on at least one of two wafers and applying a force and optionally heat to the wafers to join them are described.
Abstract:
Micromachining, etching and bonding techniques are employed to fabricate hermetically sealed gas-filled chambers from silicon and/or glass wafers. The hermetically sealed gas-filled chambers have precise dimensions and are filled with a preselected concentration of gas, thus rendering exceptional performance for use as an optical gas filter. The first step involves etching one or more cavities or holes in one or more glass or silicon wafers. These wafers eventually become part of a chip assembly having one or more hermetically sealed gas-filled chambers after appropriate bonding procedures. Interfaces between aligned silicon wafers are bonded using fusion bonding techniques whereas interfaces between silicon and glass wafers are bonded using anodic bonding techniques. Bonding is accomplished in an over-pressured gas-filled bonding environment that contains a selected concentration of gas which is maintained at the bonding temperature in order to encapsulate a precise concentration of the gas within the micromachined cavity.
Abstract:
A vent hole precursor structure (26) in an intermediate product for a semi-conductor device has delicate structures (27, 28), and said intermediate product has a cavity (21) with a pressure therein differing from the pressure of the surroundings. The intermediate product comprises a first wafer (20) in which there is formed a depression (21). The first wafer is bonded to a second wafer (22) comprising a device layer (23) from which the structures (27, 28) are to be made by etching. A hole or groove (26) having a predefined depth extends downwards into the device layer, such that the cavity (21) during etching is opened up before the etching procedure breaks through the device layer (23) to form the structures (27, 28).
Abstract:
A method of combining components to form an integrated device, wherein the components are provided on a first sacrificial wafer, and a second non-sacrificial wafer, respectively. The sacrificial wafer carries a first plurality of components and the non-sacrificial wafer carries a second plurality of components. The wafers are bonded together with an intermediate bonding material. Optionally the sacrificial wafer is thinned to a desired level. The components of the sacrificial wafer are electrically interconnected to the component(s) on the non-sacrificial wafer. Finally, optionally the intermediate bonding material is stripped away.
Abstract:
The invention relates to a method of making a starting substrate wafer for semiconductor engineering having electrical wafer through connections (140; 192). It comprises providing a wafer (110; 150) having a front side and a back side and having a base of low resistivity silicon and a layer of high resistivity material on the front side. On the wafer there are islands of low resistivity material in the layer of high resistivity material. The islands are in contact with the silicon base material. Trenches are etched from the back side of the wafer but not all the way through the wafer to provide insulating enclosures defining the wafer through connections (140; 192). The trenches are filled with insulating material. Then the front side of the wafer is grinded to expose the insulating material to create the wafer through connections. Also there is provided a wafer substrate for making integrated electronic circuits and/or components, comprising a low resistivity silicon base (110) having a high resistivity top layer (122) suitable for semiconductor engineering, characterized by having low resistivity wafer through connections (140).