摘要:
In an organic thin film (a light emitting layer) of an organic EL element, an organic thin film having an emitting material which is made up of an organic polymer main backbone polymerized with a molecular chain, which emits light having a maximum value at a wavelength different from a wavelength at which an emission spectrum emitted by the main backbone itself has a maximum value, and nanosized particles which are mixed into the emitting material is used as the light emitting layer. According to the above configuration, the maximum values of the emission spectra of light emitted by the molecular chain and the main backbone of the emitting material can be increased. Moreover, the light which has the emission spectra having the plural maximum values can be generated without depending on the plural emitting materials, so that the light emitting layer can be manufactured easily.
摘要:
Fine mesoporous silica particles are provided by which not only the functions of low reflectance (Low-n), low dielectric constant (Low-k) and low thermal conductivity but also improved strength of a molded article are achieved. The fine mesoporous silica particles are manufactured by a process including a surfactant composite fine silica particle preparation step and a mesoporous particle formation step. In the silica fine particle preparation step, a surfactant, water, an alkali and a hydrophobic part-containing additive including a hydrophobic part for increasing the volume of micelles are mixed with a silica source to thereby prepare surfactant composite fine silica particles. In the mesoporous particle formation step, the mixture is mixed with an acid and an organosilicon compound to thereby remove the surfactant and hydrophobic part-containing additive from the surfactant composite fine silica particles and provide the surface of each silica fine particle with an organic functional group. The fine mesoporous silica particles have mesopores inside each particle, and are modified on the surface with organic functional groups.
摘要:
A circuit component built-in module is provided in which a solder that is remelted when the circuit component built-in module is mounted on a motherboard by using the solder is prevented from flowing to the outside of the prescribed electrodes.A first groove (116) is formed in a solder resist (106) located between two electrodes (103) to which a circuit component (104) is connected. A configuration is used in which the space between the first groove (116) and circuit component (104) is filled with a first insulating resin (107).
摘要:
A circuit component built-in module is provided in which a solder that is remelted when the circuit component built-in module is mounted on a motherboard by using the solder is prevented from flowing to the outside of the prescribed electrodes. A first groove (116) is formed in a solder resist (106) located between two electrodes (103) to which a circuit component (104) is connected. A configuration is used in which the space between the first groove (116) and circuit component (104) is filled with a first insulating resin (107).
摘要:
The mesoporous silica particles each comprise a core particle comprising first mesopores, wherein a periphery of the core particle is covered with silica. Preferably, second mesopores, smaller than the first mesopores, are provided in the silica-covered part formed by the silica covering. The mesoporous silica particles are produced by: a surfactant complex silica particle preparation step of mixing a surfactant, water, an alkali, a hydrophobic part-containing additive and a silica source to thereby prepare surfactant complex silica particles, said hydrophobic part-containing additive including a hydrophobic part for increasing a volume of micelles to be formed by the surfactant; and a silica covering step of adding the silica source to the surfactant complex silica particles to thereby cover a periphery of each core particle with silica.
摘要:
A flexible substrate includes: (i) a film; (ii) an insulating resin layer formed on each of a front face of the film and a rear face of the film, which rear face is opposite to the front face; (iii) a front-sided wiring pattern embedded in the insulating resin layer formed on the front face of the film, and a rear-sided wiring pattern embedded in the insulating resin layer formed on the rear face of the film; and (iv) a via which is located between the front-sided wiring pattern and the rear-sided wiring pattern and serves to electrically interconnect the front-sided wiring pattern and the rear-sided wiring pattern, wherein the insulating resin layer formed on each of the front face and the rear face of the film is thicker than the film.
摘要:
A highly reliable, high-productivity package equipped with a semiconductor chip, and a method for producing the same. In a package (100) comprising a semiconductor chip (10) and a mounting substrate (30), a plurality of electrode terminals (12) are formed on the surface (10a) of the semiconductor chip (10) opposing the mounting substrate side, connection terminals (32) respectively corresponding to the plurality of electrode terminals (12), are formed on the mounting substrate (30), the connection terminals (32) on the mounting substrate (30) and the electrode terminals (12) are electrically connected collectively by solder bumps (17) formed in self-assembly, an electrode pattern (20) not connected with the electrode terminals (12) and the connection terminals (32) is formed on the chip surface (10a) or the surface (35) of the mounting substrate (30) corresponding to the chip surface (10a), and solder (19) is accumulated on the electrode pattern (20).
摘要:
A flexible substrate comprises a film, a first insulating resin layer on a front face of the film, a second insulating resin layer on a rear face of the film, a front-sided wiring pattern embedded in the first insulating resin layer, and a rear-sided wiring pattern embedded in the second insulating resin layer. A surface of the front-sided wiring pattern is flush with a surface of the first insulating resin layer, and a surface of the rear-sided wiring pattern is flush with a surface of the second insulating resin layer. A part of at least one of the front-sided wiring pattern and the rear-sided wiring pattern is dented toward a part of the other of the at least one of the front-sided wiring pattern and the rear-sided wiring pattern such that a portion of the front-sided wiring pattern and a portion of the rear-sided wiring pattern are jointed to each other to form a junction.
摘要:
In an organic thin film (a light emitting layer) of an organic EL element, an organic thin film having an emitting material which is made up of an organic polymer main backbone polymerized with a molecular chain, which emits light having a maximum value at a wavelength different from a wavelength at which an emission spectrum emitted by the main backbone itself has a maximum value, and nanosized particles which are mixed into the emitting material is used as the light emitting layer. According to the above configuration, the maximum values of the emission spectra of light emitted by the molecular chain and the main backbone of the emitting material can be increased. Moreover, the light which has the emission spectra having the plural maximum values can be generated without depending on the plural emitting materials, so that the light emitting layer can be manufactured easily.
摘要:
Provided is a highly-reliable organic electroluminescence element in which loss of light due to surface plasmons generated on a metal surface is suppressed, the efficiency of light extraction to outside the element, and short circuits are unlikely to occur. The organic electroluminescence element includes a metal layer (1), on a surface of which a nanosize uneven structure is provided by a nanoparticle arrangement structure (6) in which nanoparticles (6a) are arranged in a planar fashion, and an organic layer (3) disposed on the uneven surface of the metal layer (1) and constituted by a plurality of layers including a light-emitting layer (31). Each interface between the plurality of layers of the organic layer (3) is flatter than the uneven surface of the metal layer (1).