摘要:
A wafer (or a circuit board), which is used to perform three-dimensional mounting, has protrusion 20 which is provided in low melting point metal 15 for electrically connecting mutually joined wafers 61 and 62, and which defines an interval between mutually joined wafers 61 and 62 without being deformed at the time when low melting point metal 15 is melted. A joining structure of wafers 61 and 62 is manufactured by using wafers 61 and 62, at least one of which has protrusion 20. In the manufactured joining structure of wafers 61 and 62, wafers 61 and 62 are electrically connected to each other by low melting point metal 15, and protrusion 20, which defines the interval between wafers 61 and 62 without being deformed at the time when low melting point metal 15 is melted, is provided in low melting point metal 15.
摘要:
The present invention includes a semiconductor element provided with an electrode passing through front and back sides. The electrode is formed as a cylinder including a hollow portion, and stress relaxing material is provided in the hollow portion, which is used to reduce stress that is induced between the semiconductor element and the electrode. The stress relaxing material is an elastic body made of resin material.
摘要:
A wafer (or a circuit board), which is used to perform three-dimensional mounting, has protrusion 20 which is provided in low melting point metal 15 for electrically connecting mutually joined wafers 61 and 62, and which defines an interval between mutually joined wafers 61 and 62 without being deformed at the time when low melting point metal 15 is melted. A joining structure of wafers 61 and 62 is manufactured by using wafers 61 and 62, at least one of which has protrusion 20. In the manufactured joining structure of wafers 61 and 62, wafers 61 and 62 are electrically connected to each other by low melting point metal 15, and protrusion 20, which defines the interval between wafers 61 and 62 without being deformed at the time when low melting point metal 15 is melted, is provided in low melting point metal 15.
摘要:
A semiconductor device comprises a mounting substrate, a semiconductor element provided above said mounting substrate, a package substrate provided above said mounting substrate with said semiconductor element therebetween and electrically connected to said semiconductor element via a primary connecting bump, a liquid cooling module cooling said semiconductor element by a liquid refrigerant, in which a heat receiving section of the liquid cooling module is disposed between said semiconductor element and said mounting substrate, and a plurality of secondary connecting bumps provided between said package substrate and said mounting substrate.
摘要:
A semiconductor device comprises a mounting substrate, a semiconductor element provided above said mounting substrate, a package substrate provided above said mounting substrate with said semiconductor element therebetween and electrically connected to said semiconductor element via a primary connecting bump, a liquid cooling module cooling said semiconductor element by a liquid refrigerant, in which a heat receiving section of the liquid cooling module is disposed between said semiconductor element and said mounting substrate, and a plurality of secondary connecting bumps provided between said package substrate and said mounting substrate.
摘要:
A bonding method (three-dimensional mounting) of semiconductor substrates is provided to sequentially bond a principal surface of a silicon wafer on which coupling bumps are formed, and a principal surface of the other silicon wafer on which pads are formed, by an adhesive applied to at least one of the principal surfaces. However, there is a problem of poor electrical coupling due to displacement of the bumps and the pads when bonded together. The present invention solves such a problem by conducting temporary positioning of the silicon wafers, adjusting the positions of the coupling bumps and pads while confirming the positions by a method such as x-ray capable of passing through the silicon wafers, and bonding the bumps and the pads together while hardening an interlayer adhesive provided between the principal surfaces of the silicon wafers by thermocompression.
摘要:
A method for manufacturing a semiconductor device includes the steps of forming first and second semiconductor wafers each including an array of chips and elongate electrodes, forming a groove on scribe lines separating the chips from one another; coating a surface of one of the semiconductor wafers with adhesive; bonding together the semiconductor wafers while allowing the groove to receive therein excessive adhesive; and heating the wafers to connect the elongate electrodes of both the semiconductor wafers.
摘要:
A method for manufacturing a semiconductor device includes the steps of forming first and second semiconductor wafers each including an array of chips and elongate electrodes, forming a groove on scribe lines separating the chips from one another; coating a surface of one of the semiconductor wafers with adhesive; bonding together the semiconductor wafers while allowing the groove to receive therein excessive adhesive; and heating the wafers to connect the elongate electrodes of both the semiconductor wafers.
摘要:
A semiconductor device comprising a semiconductor pellet mounted on a pellet mounting area of the main surface of a base substrate, in which first electrode pads arranged on the back of the base substrate are electrically connected to bonding pads arranged on the main surface of the semiconductor pellet. The base substrate is formed of a rigid substrate, and its first electrode pads are electrically connected to the second electrode pads arranged on its reverse side. The semiconductor pellet is mounted on the pellet mounting area of the main surface of the base substrate, with its main surface downward, and its bonding pads are connected electrically with the second electrode pads of the base substrate through bonding wires passing through slits formed in the base substrate.
摘要:
The occurrence of a package crack in the back vicinity of a die pad is restrained by making the outward appearance of the die pad of a lead frame smaller than that of a semiconductor chip which is mounted on it, and also the occurrence of a package crack in the main surface vicinity of the semiconductor chip is restrained by forming a layer of organic material with good adhesion property with the resin that constitutes the package body on the final passivation film (final passivation film) that covers the top layer of conductive wirings of the semiconductor chip.