摘要:
A semiconductor device has a substrate and first conductive layer formed over the substrate. An insulating layer is formed over the first substrate with an opening over the first conductive layer. A second conductive layer is formed within the opening of the insulating layer. A portion of the second conductive layer is removed to expose a horizontal surface and side surfaces of the second conductive layer below a surface of the insulating layer. The second conductive layer has non-linear surfaces to extend a contact area of the second conductive layer. The horizontal surface and side surfaces can be stepped surfaces or formed as a ring. A third conductive layer is formed over the second conductive layer. A plurality of bumps is formed over the horizontal surface and side surfaces of the second conductive layer. A semiconductor die is mounted to the substrate.
摘要:
A semiconductor device has a substrate and first conductive layer formed over the substrate. An insulating layer is formed over the first substrate with an opening over the first conductive layer. A second conductive layer is formed within the opening of the insulating layer. A portion of the second conductive layer is removed to expose a horizontal surface and side surfaces of the second conductive layer below a surface of the insulating layer. The second conductive layer has non-linear surfaces to extend a contact area of the second conductive layer. The horizontal surface and side surfaces can be stepped surfaces or formed as a ring. A third conductive layer is formed over the second conductive layer. A plurality of bumps is formed over the horizontal surface and side surfaces of the second conductive layer. A semiconductor die is mounted to the substrate.
摘要:
A semiconductor device has a semiconductor die with an insulation layer formed over an active surface of the semiconductor die. A conductive layer is formed over the first insulating layer electrically connected to the active surface. A plurality of conductive pillars is formed over the conductive layer. A plurality of dummy pillars is formed over the first insulating layer electrically isolated from the conductive layer and conductive pillars. The semiconductor die is mounted to a substrate. A height of the dummy pillars is greater than a height of the conductive pillars to maintain the standoff distance between the semiconductor die and substrate. The dummy pillars can be formed over the substrate. The dummy pillars are disposed at corners of the semiconductor die and a central region of the semiconductor die. A mold underfill material is deposited between the semiconductor die and substrate.
摘要:
A semiconductor device has a semiconductor die mounted to a substrate. A plurality of conductive pillars is formed over a semiconductor die. A plurality of conductive protrusions is formed over the conductive pillars. Bumps are formed over the conductive protrusions and conductive pillars. Alternatively, the conductive protrusions are formed over the substrate. A conductive layer is formed over the substrate. The semiconductor die is mounted to the substrate by reflowing the bumps at a temperature that is less than a melting point of the conductive pillars and conductive protrusions to metallurgically and electrically connect the bumps to the conductive layer while maintaining a fixed offset between the semiconductor die and substrate. The fixed offset between the semiconductor die and substrate is determined by a height of the conductive pillars and a height of the conductive protrusions. A mold underfill material is deposited between the semiconductor die and substrate.
摘要:
A semiconductor device has a semiconductor die with an insulation layer formed over an active surface of the semiconductor die. A conductive layer is formed over the first insulating layer electrically connected to the active surface. A plurality of conductive pillars is formed over the conductive layer. A plurality of dummy pillars is formed over the first insulating layer electrically isolated from the conductive layer and conductive pillars. The semiconductor die is mounted to a substrate. A height of the dummy pillars is greater than a height of the conductive pillars to maintain the standoff distance between the semiconductor die and substrate. The dummy pillars can be formed over the substrate. The dummy pillars are disposed at corners of the semiconductor die and a central region of the semiconductor die. A mold underfill material is deposited between the semiconductor die and substrate.
摘要:
A semiconductor device has a semiconductor die mounted to a substrate. A plurality of conductive pillars is formed over a semiconductor die. A plurality of conductive protrusions is formed over the conductive pillars. Bumps are formed over the conductive protrusions and conductive pillars. Alternatively, the conductive protrusions are formed over the substrate. A conductive layer is formed over the substrate. The semiconductor die is mounted to the substrate by reflowing the bumps at a temperature that is less than a melting point of the conductive pillars and conductive protrusions to metallurgically and electrically connect the bumps to the conductive layer while maintaining a fixed offset between the semiconductor die and substrate. The fixed offset between the semiconductor die and substrate is determined by a height of the conductive pillars and a height of the conductive protrusions. A mold underfill material is deposited between the semiconductor die and substrate.
摘要:
A semiconductor device has a semiconductor die with composite bump structures over a surface of the semiconductor die. A conductive layer is formed over a substrate. A patterning layer is formed over the substrate. A first portion of the patterning layer is removed to form an opening to expose the substrate and conductive layer. A second portion of the patterning layer is removed to form a sloped surface in the patterning layer extending from a surface of the patterning layer down to the substrate. The sloped surface in the patterning layer can be linear, concave, or convex. The die is mounted to the substrate with the composite bump structures electrically connected to the conductive layer. An underfill material is deposited over the surface of the patterning layer. The sloped surface in the patterning layer aids with the flow of underfill material to cover an area between the die and substrate.
摘要:
A semiconductor device has a semiconductor die with composite bump structures over a surface of the semiconductor die. A conductive layer is formed over a substrate. A patterning layer is formed over the substrate. A first portion of the patterning layer is removed to form an opening to expose the substrate and conductive layer. A second portion of the patterning layer is removed to form a sloped surface in the patterning layer extending from a surface of the patterning layer down to the substrate. The sloped surface in the patterning layer can be linear, concave, or convex. The die is mounted to the substrate with the composite bump structures electrically connected to the conductive layer. An underfill material is deposited over the surface of the patterning layer. The sloped surface in the patterning layer aids with the flow of underfill material to cover an area between the die and substrate.
摘要:
A method of manufacture of an integrated circuit packaging system includes: providing a substrate; attaching a connection post to the substrate, the connection post having a post top and a post side; mounting an integrated circuit die on the substrate, the integrated circuit die having a top die surface; and forming a package body on the substrate, the connection post, and the integrated circuit die.
摘要:
A method of manufacture of an integrated circuit packaging system includes: providing a substrate; attaching a connection post to the substrate, the connection post having a post top and a post side; mounting an integrated circuit die on the substrate, the integrated circuit die having a top die surface; and forming a package body on the substrate, the connection post, and the integrated circuit die.