摘要:
Provided is a system and method to prevent the transfer of accumulated fluid to wafers during cleaning operations. Specifically, when a wafer is secured by a plurality of self-draining edge wheels, any fluid contacting the self-draining edge wheels is channeled away from the wafer towards a bottom surface of each of the self-draining edge wheels. The channeling occurs by manufacturing the bottom portions of the self-draining edge wheels to have different configurations. The different configurations enhance fluid channeling away from the wafer. To further prevent fluid from wetting a bottom surface of the self-draining edge wheels, an edge wheel dryer can be positioned proximately adjacent to at least one self-draining edge wheel to suction fluid away from the bottom surface by using a vacuum channel of the edge wheel dryer.
摘要:
Methods for processing substrate through a head that is configured to be placed in close non-contact proximity to a surface of a substrate are provided. One method includes applying a first fluid onto the surface of the substrate from conduits in the head when the head is in close proximity to the surface of the substrate and removing the first fluid from the surface of the substrate. The removing is processed just as first fluid is applied to the surface of the substrate, and the removing ensures that the applied first fluid is contained between a surface of the head and the surface of the substrate and the first fluid being applied and removed defines a controlled meniscus. The method further includes moving the controlled meniscus over different regions of the surface of the substrate when movement of the head or the substrate is dictated. The moving of the controlled meniscus enables processing of part or all of the surface of the substrate using the first fluid.
摘要:
A method of making an electronic device which in one embodiment comprises providing a substrate, electrolessly depositing a barrier metal at least on portions of the substrate, and using wet chemistry such as electroless deposition to deposit a substantially gold-free wetting layer having solder wettability onto the barrier metal. An electronic device which in one embodiment comprises a metallization stack. The metallization stack comprises a barrier metal deposited electrolessly and a substantially gold-free wetting layer deposited on the barrier metal, and the wetting layer is wettable by solder.
摘要:
One aspect of the present invention is a method of processing a substrate. In one embodiment, the method comprises forming an electrical conductor on or in the substrate by providing a mixture comprising metal particles and an electroless deposition solution and electrolessly depositing a metal matrix and co-depositing the metal particles. In another embodiment, the method comprises forming an electrical conductor on or in the substrate by providing a mixture comprising metal particles and an electrochemical plating solution and electrochemically plating a metal matrix and co-depositing the metal particles. Another aspect of the present invention is a mixture for the formation of an electrical conductor on or in a substrate. Another aspect of the present invention is an electronic device.
摘要:
Methods and systems for handling a substrate through processes including an integrated electroless deposition process includes processing a surface of the substrate in an electroless deposition module to deposit a layer over conductive features of the substrate using a deposition fluid. The surface of the substrate is then rinsed in the electroless deposition module with a rinsing fluid. The rinsing is controlled to prevent de-wetting of the surface so that a transfer film defined from the rinsing fluid remains coated over the surface of the substrate. The substrate is removed from the electroless deposition module while maintaining the transfer film over the surface of the substrate. The transfer film over the surface of the substrate prevents drying of the surface of the substrate so that the removing is wet. The substrate, once removed from the electroless deposition module, is moved into a post-deposition module while maintaining the transfer film over the surface of the substrate.
摘要:
Methods of depositing a barrier layer on an interconnect structure in an atomic deposition environment are provided. One method includes depositing a barrier layer on the interconnect structure with a first nitrogen concentration during a first phase of deposition in the atomic deposition environment, The interconnect structure is formed in a dielectric layer. Then, continuing the deposition of the barrier layer on the interconnect structure with a second nitrogen concentration during a second phase deposition in the atomic deposition environment. The nitrogen concentration step-wisely decreases from the first nitrogen concentration in the first phase of the barrier layer to the second nitrogen concentration in the second phase of the barrier layer, and the first nitrogen concentration is highest where the barrier layer is in contact with the dielectric layer. A copper layer is then formed over the barrier layer, such that a nitrogen concentration in the barrier layer is lowest where the barrier layer is in contact with the copper layer.
摘要:
The present invention relates to methods and systems for the metallization of semiconductor devices. One aspect of the present invention is a method of depositing a copper layer onto a barrier layer so as to produce a substantially oxygen free interface therebetween. In one embodiment, the method includes providing a substantially oxide free surface of the barrier layer. The method also includes depositing an amount of atomic layer deposition (ALD) copper on the oxide free surface of the barrier layer effective to prevent oxidation of the barrier layer. The method further includes depositing a gapfill copper layer over the ALD copper. Another aspect of the present invention is a system for depositing a copper layer onto barrier layer so as to produce a substantially oxygen-free interface therebetween. In one embodiment, the integrated system includes at least one barrier deposition module. The system also includes an ALD copper deposition module configured to deposit copper by atomic layer deposition. The system further includes a copper gapfill module and at least one transfer module coupled to the at least one barrier deposition module and to the ALD copper deposition module. The transfer module is configured so that the substrate can be transferred between the modules substantially without exposure to an oxide-forming environment.
摘要:
A method for cleaning an edge surface of a semiconductor substrate is disclosed. The proximity head unit is positioned so that the flow head portion and the collection head portion of the proximity head unit are proximate to the edge surface of the semiconductor substrate. The semiconductor substrate is then rotated using one or more powered rollers. During the rotation of the semiconductor substrate, the flow head portion applies a fluid to the edge surface while the collection head portion collects fluid from the edge surface. Additional methods, an apparatuses, and a system for cleaning an edge surface of a semiconductor substrate are also described.
摘要:
A proximity head and associated method of use is provided for performing confined area planarization of a semiconductor wafer. The proximity head includes a chamber defined to maintain an electrolyte solution. A cathode is disposed within the chamber in exposure to the electrolyte solution. A cation exchange membrane is disposed over a lower opening of the chamber. A top surface of the cation exchange membrane is in direct exposure to the electrolyte solution to be maintained within the chamber. A fluid supply channel is defined to expel fluid at a location adjacent to a lower surface of the cation exchange membrane. A vacuum channel is defined to provide suction at a location adjacent to the lower surface of the cation exchange membrane, such that the fluid to be expelled from the fluid supply channel is made to flow over the lower surface of the cation exchange membrane.
摘要:
One of many embodiments of a substrate preparation system is provided which includes a head having a head surface where the head surface is proximate to a surface of the substrate. The system also includes a first conduit for delivering a first fluid to the surface of the substrate through the head, and a second conduit for delivering a second fluid to the surface of the substrate through the head, where the second fluid is different than the first fluid. The system also includes a third conduit for removing each of the first fluid and the second fluid from the surface of the substrate where the first conduit, the second conduit and the third conduit act substantially simultaneously.