摘要:
Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a substrate core by attaching a first dielectric layer to a second conductive layer of a thin film capacitor, and attaching a second dielectric layer to a first conductive layer of the thin film capacitor.
摘要:
A thin-film capacitor assembly includes two plates that are accessed through deep and shallow vias. The thin-film capacitor assembly is able to be coupled with a spacer and an interposer. The thin-film capacitor assembly is also able to be stacked with a plurality of thin-film capacitor assemblies. The thin-film capacitor assembly is also part of computing system.
摘要:
Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a substrate core by attaching a first dielectric layer to a second conductive layer of a thin film capacitor, and attaching a second dielectric layer to a first conductive layer of the thin film capacitor.
摘要:
An organic substrate, thin-film capacitor composite includes two plates that are accessed through deep and shallow vias. The organic substrate, thin-film capacitor composite includes integral structure with at least one trace in the organic substrate. The composite is able to be coupled with an interposer. The composite is also part of computing system.
摘要:
Methods of forming a microelectronic structure are described. Embodiments of those methods include forming a substrate core by attaching a first dielectric layer to a second conductive layer of a thin film capacitor, and attaching a second dielectric layer to a first conductive layer of the thin film capacitor.
摘要:
Methods of forming a microelectronic packaging structure and associated structures formed thereby are described. Those methods may include attaching a die to a carrier material, wherein the carrier material comprises a top layer and a bottom layer separated by an etch stop layer; forming a dielectric material adjacent the die, forming a coreless substrate by building up layers on the dielectric material, and then removing the top layer carrier material and etch stop layer from the bottom layer carrier material.
摘要:
In some embodiments, same layer microelectronic circuit patterning using hybrid laser projection patterning (LPP) and semi-additive patterning (SAP) is presented. In this regard, a method is introduced including patterning a first density region of a laminated substrate surface using LPP, patterning a second density region of the laminated substrate surface using SAP, and plating the first and second density regions of the laminated substrate surface, wherein features spanning the first and second density regions are directly coupled. Other embodiments are also disclosed and claimed.
摘要:
A method of providing electrically conductive bumps on electrode pads of a microelectronic substrate, and bumped substrate formed according to the method. The method includes: providing a microelectronic substrate including electrode pads; providing a sorting mask defining first openings and second openings therethrough, the second openings being larger than the first openings; disposing the mask onto the substrate such that the first openings and second openings register with respective ones of the electrode pads; providing first solder portions onto corresponding ones of the electrode pads through the first openings, and second solder portions onto corresponding ones of the electrode pads through the second openings, the second solder portions being larger than the first solder portions; reflowing the solder portions to form, respectively first solder bumps and second solder bumps on respective ones of the electrode pads; and removing the mask after providing solder portions and before reflowing.
摘要:
In an embodiment, a substrate includes a thin film capacitor embedded within. In an embodiment, a plurality of adhesion holes extend through the thin film capacitor. These adhesion holes may improve the adhesion of the capacitor to other portions of the substrate.
摘要:
A method of providing electrically conductive bumps on electrode pads of a microelectronic substrate, and bumped substrate formed according to the method. The method includes: providing a substrate including first electrode pads and second electrode pads thereon, the first electrode pads exhibiting a first pattern, and the second electrode pads exhibiting a second pattern different from the first pattern; attaching first solder portions to a solder delivery head according to the first pattern, and second solder portions to a solder delivery head according to the second pattern, the second solder portions being larger than the first solder portions; after attaching, releasing the first solder portions onto the first electrode pads, and the second solder portions onto the second electrode pads; after releasing, reflowing the first solder portions and second solder portions to form, respectively, first solder bumps and second solder bumps on the electrode pads.