摘要:
Method of manufacturing patterned conductor is provided, comprising: providing a conductivised substrate, wherein the conductivised substrate comprises a substrate and an electrically conductive layer; providing an electrically conductive layer etchant; providing a spinning material; providing a masking fiber solvent; forming a plurality of masking fibers and depositing the plurality of masking fibers onto the electrically conductive layer; exposing the electrically conductive layer to the electrically conductive layer etchant, wherein the electrically conductive layer that is uncovered by the plurality of masking fibers is removed from the substrate, leaving an interconnected conductive network on the substrate covered by the plurality of masking fibers; and, exposing the plurality of masking fibers to the masking fiber solvent, wherein the plurality of masking fibers are removed to uncover the interconnected conductive network on the substrate.
摘要:
A copolymer composition is provided including a block copolymer having a poly(acrylate) block and a poly(silyl acrylate) block; wherein the block copolymer exhibits a number average molecular weight, MN, of 1 to 1,000 kg/mol; and, wherein the block copolymer exhibits a polydispersity, PD, of 1 to 2. Also provided are substrates treated with the copolymer composition.
摘要:
A transformative wavelength conversion medium is provided, comprising: a phosphor; and, a curable liquid component, wherein the curable liquid component, comprises: an aliphatic resin component, wherein the aliphatic resin component has an average of two epoxide groups per molecule; and, a curing agent; wherein the curable liquid component contains less than 0.5 wt % of monoepoxide molecules (based on the total weight of the aliphatic resin component); and, wherein the curable liquid component is a liquid at 25° C. and atmospheric pressure; and, wherein the phosphor is dispersed in the curable liquid component.
摘要:
Disclosed herein is a semiconducting nanoparticle comprising a one-dimensional semiconducting nanoparticle having a first end and a second end; where the second end is opposed to the first end; and two first endcaps, one of which contacts the first end and the other of which contacts the second end respectively of the one-dimensional semiconducting nanoparticle; where the first endcap that contacts the first end comprises a first semiconductor and where the first endcap extends from the first end of the one-dimensional semiconducting nanoparticle to form a first nanocrystal heterojunction; where the first endcap that contacts the second end comprises a second semiconductor; where the first endcap extends from the second end of the one-dimensional semiconducting nanoparticle to form a second nanocrystal heterojunction; and where the first semiconductor and the second semiconductor are chemically different from each other.
摘要:
A process for manufacturing silver nanowires is provided, comprising: providing a silver ink core component containing ≧60 wt % silver nanoparticles dispersed in a silver carrier; providing a shell component containing a film forming polymer dispersed in a shell carrier; providing a substrate; coelectrospinning the silver ink core component and the shell component depositing on the substrate a core shell fiber having a core and a shell surrounding the core, wherein the silver nanoparticles are in the core; and, treating the silver nanoparticles to form a population of silver nanowires, wherein the population of silver nanowires exhibit an average length, L, of ≧60 μm.
摘要:
A transformative wavelength conversion medium is provided, comprising: a phosphor; and, a curable liquid component, wherein the curable liquid component, comprises: an aliphatic resin component, wherein the aliphatic resin component has an average of two epoxide groups per molecule; and, a curing agent; wherein the curable liquid component contains less than 0.5 wt % of monoepoxide molecules (based on the total weight of the aliphatic resin component); and, wherein the curable liquid component is a liquid at 25° C. and atmospheric pressure; and, wherein the phosphor is dispersed in the curable liquid component.
摘要:
A process for manufacturing silver nanowires is provided, comprising: providing a silver ink core component containing ≧60 wt % silver nanoparticles dispersed in a silver carrier; providing a shell component containing a film forming polymer dispersed in a shell carrier; providing a substrate; coelectrospinning the silver ink core component and the shell component depositing on the substrate a core shell fiber having a core and a shell surrounding the core, wherein the silver nanoparticles are in the core; and, treating the silver nanoparticles to form a population of silver nanowires, wherein the population of silver nanowires exhibit an average length, L, of ≧60 μm.
摘要:
The invention provides a composition comprising at least the following A and B: A) a polymer comprising, in polymerized from, at least one “monomer that comprises at least one hydroxyl group;” and B) an organometal compound comprising at least one metal selected from Ti, Zr, Hf, Co, Mn, Zn, or combinations thereof, and wherein the organometal compound is present in an amount greater than 5 weight percent, based on the sum weight of A and B.
摘要:
The invention provides a composition comprising at least the following A and B: A) a polymer comprising, in polymerized from, at least one “monomer that comprises at least one hydroxyl group;” and B) an organometal compound comprising at least one metal selected from Ti, Zr, Hf, Co, Mn, Zn, or combinations thereof, and wherein the organometal compound is present in an amount greater than 5 weight percent, based on the sum weight of A and B.
摘要:
In one aspect, structures are provided comprising: a substrate having a first surface and a second surface; and a polymeric layer disposed on the first surface of the substrate, the polymeric layer comprising a polymer and a plurality of light-emitting nanocrystals; the polymeric layer having a patterned surface, the patterned surface having a patterned first region having a first plurality of recesses and a patterned second region having a second plurality of recesses, wherein the plurality of recesses in each region has a first periodicity in a first direction, and a second periodicity in a second direction which intersects the first direction, wherein the first periodicity of the first region is different from the first periodicity of the second region.