摘要:
A design structure to provide a package for a semiconductor chip that minimizes the stresses and strains that arise from differential thermal expansion in chip to substrate or chip to card interconnections. An improved set of design structure vias above the final copper metallization level that mitigate shocks during semiconductor assembly and testing. Other embodiments include design structures having varying micro-mechanical support structures that further minimize stress and strain in the semiconductor package.
摘要:
A design structure to provide a package for a semiconductor chip that minimizes the stresses and strains that arise from differential thermal expansion in chip to substrate or chip to card interconnections. An improved set of design structure vias above the final copper metallization level that mitigate shocks during semiconductor assembly and testing. Other embodiments include design structures having varying micro-mechanical support structures that further minimize stress and strain in the semiconductor package.
摘要:
A structure and a method for forming the same. The structure includes a first dielectric layer, an electrically conductive bond pad on the first dielectric layer, and a second dielectric layer on top of the first dielectric layer and the electrically conductive bond pad. The electrically conductive bond pad is sandwiched between the first and second dielectric layers. The second dielectric layer includes N separate final via openings such that a top surface of the electrically conductive bond pad is exposed to a surrounding ambient through each final via opening of the N separate final via openings. N is a positive integer greater than 1.
摘要:
A semiconductor structure and method for forming the same. The semiconductor structure includes (a) a substrate and (b) a chip which includes N chip solder balls, N is a positive integer, and the N chip solder balls are in electrical contact with the substrate. The semiconductor structure further includes (c) first, second, third, and fourth corner underfill regions which are respectively at first, second, third, and fourth corners of the chip, and sandwiched between the chip and the substrate. The semiconductor structure further includes (d) a main underfill region sandwiched between the chip and the substrate. The first, second, third, and fourth corner underfill regions, and the main underfill region occupy essentially an entire space between the chip and the substrate. A corner underfill material of the first, second, third, and fourth corner underfill regions is different from a main underfill material of the main underfill region.
摘要:
The present invention relates to a method for minimizing breakage of wafers during or after a wafer thinning process. A method of forming a rounded edge to the portion of a wafer remaining after surface grinding process is provided. The method comprises providing a semiconductor wafer having an edge and forming a recess in the edge of the wafer using any suitable mechanical or chemical process. The method further comprises forming a substantially continuous curved shape for at least the edge of the wafer located above the recess. Advantageously, the shape of the wafer is formed prior to the backside grind process to prevent problems caused by the otherwise presence of a sharp edge during the backside grind process.
摘要:
The invention includes embodiments of a method for designing a flip chip and the resulting structure. The starting point is a flip chip with a semiconductor substrate, one or more wiring levels, and a plurality of I/O contact pads (last metal pads/bond pads) for receiving and sending electrical current. There is also a plurality of C4 bumps for connecting the I/O contact pads to another substrate. Then it is determined which of the C4s of the plurality of C4 bumps have a level of susceptibility to electromigration damage that meets or exceeds a threshold level of susceptibility, and in response, plating a conductive structure with a high electrical current carrying capacity (such as a copper pillar, copper pedestal, or partial copper pedestal) onto the corresponding I/O contact pads and adding a solder ball to a top portion of the conductive structure. The resulting structure is a flip chip wherein only a select few C4 bumps use enhanced C4s (such as copper pedestals) reducing the chance of defects.
摘要:
The invention includes embodiments of a method for designing a flip chip and the resulting structure. The starting point is a flip chip with a semiconductor substrate, one or more wiring levels, and a plurality of I/O contact pads (last metal pads/bond pads) for receiving and sending electrical current. There is also a plurality of C4 bumps for connecting the I/O contact pads to another substrate. Then it is determined which of the C4s of the plurality of C4 bumps have a level of susceptibility to electromigration damage that meets or exceeds a threshold level of susceptibility, and in response, plating a conductive structure with a high electrical current carrying capacity (such as a copper pillar, copper pedestal, or partial copper pedestal) onto the corresponding I/O contact pads and adding a solder ball to a top portion of the conductive structure. The resulting structure is a flip chip wherein only a select few C4 bumps use enhanced C4s (such as copper pedestals) reducing the chance of defects.
摘要:
The present invention relates to a method for minimizing breakage of wafers during or after a wafer thinning process. A method of forming a rounded edge to the portion of a wafer remaining after surface grinding process is provided. The method comprises providing a semiconductor wafer having an edge and forming a recess in the edge of the wafer using any suitable mechanical or chemical process. The method further comprises forming a substantially continuous curved shape for at least the edge of the wafer located above the recess. Advantageously, the shape of the wafer is formed prior to the backside grind process to prevent problems caused by the otherwise presence of a sharp edge during the backside grind process.
摘要:
A structure and a method for forming the same. The structure includes a first dielectric layer, an electrically conductive bond pad on the first dielectric layer, and a second dielectric layer on top of the first dielectric layer and the electrically conductive bond pad. The electrically conductive bond pad is sandwiched between the first and second dielectric layers. The second dielectric layer includes N separate final via openings such that a top surface of the electrically conductive bond pad is exposed to a surrounding ambient through each final via opening of the N separate final via openings. N is a positive integer greater than 1.
摘要:
A solder interconnect structure is provided with non-wettable sidewalls and methods of manufacturing the same. The method includes forming a nickel or nickel alloy pillar on an underlying surface. The method further includes modifying the sidewall of the nickel or nickel alloy pillar to prevent solder wetting on the sidewall.