摘要:
A structure. The structure includes a substrate, a resistive/reflective region on the substrate, and a light source/light detecting and/or a sens-amp circuit configured to ascertain a reflectance and/or resistance change in the resistive/reflective region. The resistive/reflective region includes a material having a characteristic of the material's reflectance and/or resistance being changed due to a phase change in the material. The resistive/reflective region is configured to respond, to an electric current through the resistive/reflective region and/or a laser beam projected on the resistive/reflective region, by the phase change in the material which causes a reflectance and/resistance change in the resistive/reflective region from a first reflectance and/or resistance value to a second reflectance and/or resistance value different from the first reflectance and/or resistance value.
摘要:
The present invention relates to a method for minimizing breakage of wafers during or after a wafer thinning process. A method of forming a rounded edge to the portion of a wafer remaining after surface grinding process is provided. The method comprises providing a semiconductor wafer having an edge and forming a recess in the edge of the wafer using any suitable mechanical or chemical process. The method further comprises forming a substantially continuous curved shape for at least the edge of the wafer located above the recess. Advantageously, the shape of the wafer is formed prior to the backside grind process to prevent problems caused by the otherwise presence of a sharp edge during the backside grind process.
摘要:
An electrical structure and method of forming. The electrical structure includes a first substrate, a first dielectric layer, an underfill layer, a first solder structure, and a second substrate. The first dielectric layer is formed over a top surface of the first substrate. The first dielectric layer includes a first opening extending through a top surface and a bottom surface of said first dielectric layer. The first solder structure is formed within the first opening and over a portion of the top surface of said first dielectric layer. The second substrate is formed over and in contact with the underfill layer.
摘要:
An electrical structure and method of forming. The electrical structure comprises an interconnect structure and a substrate. The substrate comprises an electrically conductive pad and a plurality of wire traces electrically connected to the electrically conductive pad. The electrically conductive pad is electrically and mechanically connected to the interconnect structure. The plurality of wire traces comprises a first wire trace, a second wire trace, a third wire trace, and a fourth wire trace. The first wire trace and second wire trace are each electrically connected to a first side of the electrically conductive pad. The third wire trace is electrically connected to a second side of the electrically conductive pad. The fourth wire trace is electrically connected to a third side of said first electrically conductive pad. The plurality of wire traces are configured to distribute a current.
摘要:
Structures and methods for forming the same. A semiconductor chip includes a semiconductor substrate and a transistor on the semiconductor substrate. The chip further includes N interconnect layers on top of the semiconductor substrate and being electrically coupled to the transistor, N being a positive integer. The chip further includes a first dielectric layer on top of the N interconnect layers, and a second dielectric layer on top of the first dielectric layer. The second dielectric layer is in direct physical contact with each interconnect layer of the N interconnect layers. The chip further includes an underfill layer on top of the second dielectric layer. The second dielectric layer is sandwiched between the first dielectric layer and the underfill layer. The chip further includes a laminate substrate on top of the underfill layer. The underfill layer is sandwiched between the second dielectric layer and the laminate substrate.
摘要:
A structure and a method for forming the same. The structure includes a first dielectric layer, an electrically conductive bond pad on the first dielectric layer, and a second dielectric layer on top of the first dielectric layer and the electrically conductive bond pad. The electrically conductive bond pad is sandwiched between the first and second dielectric layers. The second dielectric layer includes N separate final via openings such that a top surface of the electrically conductive bond pad is exposed to a surrounding ambient through each final via opening of the N separate final via openings. N is a positive integer greater than 1.
摘要:
Structures and methods for forming the same. A semiconductor chip includes a semiconductor substrate and a transistor on the semiconductor substrate. The chip further includes N interconnect layers on top of the semiconductor substrate and being electrically coupled to the transistor, N being a positive integer. The chip further includes a first dielectric layer on top of the N interconnect layers, and a second dielectric layer on top of the first dielectric layer. The second dielectric layer is in direct physical contact with each interconnect layer of the N interconnect layers. The chip further includes an underfill layer on top of the second dielectric layer. The second dielectric layer is sandwiched between the first dielectric layer and the underfill layer. The chip further includes a laminate substrate on top of the underfill layer. The underfill layer is sandwiched between the second dielectric layer and the laminate substrate.
摘要:
A semiconductor structure and a method for forming the same. The structure includes (i) a dielectric layer, (ii) a bottom capacitor plate and an electrically conductive line on the dielectric layer, (iii) a top capacitor plate on top of the bottom capacitor plate, (iv) a gap region, and (v) a solder ball on the dielectric layer. The dielectric layer includes a top surface that defines a reference direction perpendicular to the top surface. The top capacitor plate overlaps the bottom capacitor plate in the reference direction. The gap region is sandwiched between the bottom capacitor plate and the top capacitor plate. The gap region does not include any liquid or solid material. The solder ball is electrically connected to the electrically conductive line. The top capacitor plate is disposed between the dielectric layer and the solder ball.
摘要:
The invention includes embodiments of a method for designing a flip chip and the resulting structure. The starting point is a flip chip with a semiconductor substrate, one or more wiring levels, and a plurality of I/O contact pads (last metal pads/bond pads) for receiving and sending electrical current. There is also a plurality of C4 bumps for connecting the I/O contact pads to another substrate. Then it is determined which of the C4s of the plurality of C4 bumps have a level of susceptibility to electromigration damage that meets or exceeds a threshold level of susceptibility, and in response, plating a conductive structure with a high electrical current carrying capacity (such as a copper pillar, copper pedestal, or partial copper pedestal) onto the corresponding I/O contact pads and adding a solder ball to a top portion of the conductive structure. The resulting structure is a flip chip wherein only a select few C4 bumps use enhanced C4s (such as copper pedestals) reducing the chance of defects.
摘要:
The invention includes embodiments of a method for designing a flip chip and the resulting structure. The starting point is a flip chip with a semiconductor substrate, one or more wiring levels, and a plurality of I/O contact pads (last metal pads/bond pads) for receiving and sending electrical current. There is also a plurality of C4 bumps for connecting the I/O contact pads to another substrate. Then it is determined which of the C4s of the plurality of C4 bumps have a level of susceptibility to electromigration damage that meets or exceeds a threshold level of susceptibility, and in response, plating a conductive structure with a high electrical current carrying capacity (such as a copper pillar, copper pedestal, or partial copper pedestal) onto the corresponding I/O contact pads and adding a solder ball to a top portion of the conductive structure. The resulting structure is a flip chip wherein only a select few C4 bumps use enhanced C4s (such as copper pedestals) reducing the chance of defects.