摘要:
The present invention relates to a method for minimizing breakage of wafers during or after a wafer thinning process. A method of forming a rounded edge to the portion of a wafer remaining after surface grinding process is provided. The method comprises providing a semiconductor wafer having an edge and forming a recess in the edge of the wafer using any suitable mechanical or chemical process. The method further comprises forming a substantially continuous curved shape for at least the edge of the wafer located above the recess. Advantageously, the shape of the wafer is formed prior to the backside grind process to prevent problems caused by the otherwise presence of a sharp edge during the backside grind process.
摘要:
The present invention relates to a method for minimizing breakage of wafers during or after a wafer thinning process. A method of forming a rounded edge to the portion of a wafer remaining after surface grinding process is provided. The method comprises providing a semiconductor wafer having an edge and forming a recess in the edge of the wafer using any suitable mechanical or chemical process. The method further comprises forming a substantially continuous curved shape for at least the edge of the wafer located above the recess. Advantageously, the shape of the wafer is formed prior to the backside grind process to prevent problems caused by the otherwise presence of a sharp edge during the backside grind process.
摘要:
The invention includes embodiments of a method for designing a flip chip and the resulting structure. The starting point is a flip chip with a semiconductor substrate, one or more wiring levels, and a plurality of I/O contact pads (last metal pads/bond pads) for receiving and sending electrical current. There is also a plurality of C4 bumps for connecting the I/O contact pads to another substrate. Then it is determined which of the C4s of the plurality of C4 bumps have a level of susceptibility to electromigration damage that meets or exceeds a threshold level of susceptibility, and in response, plating a conductive structure with a high electrical current carrying capacity (such as a copper pillar, copper pedestal, or partial copper pedestal) onto the corresponding I/O contact pads and adding a solder ball to a top portion of the conductive structure. The resulting structure is a flip chip wherein only a select few C4 bumps use enhanced C4s (such as copper pedestals) reducing the chance of defects.
摘要:
The invention includes embodiments of a method for designing a flip chip and the resulting structure. The starting point is a flip chip with a semiconductor substrate, one or more wiring levels, and a plurality of I/O contact pads (last metal pads/bond pads) for receiving and sending electrical current. There is also a plurality of C4 bumps for connecting the I/O contact pads to another substrate. Then it is determined which of the C4s of the plurality of C4 bumps have a level of susceptibility to electromigration damage that meets or exceeds a threshold level of susceptibility, and in response, plating a conductive structure with a high electrical current carrying capacity (such as a copper pillar, copper pedestal, or partial copper pedestal) onto the corresponding I/O contact pads and adding a solder ball to a top portion of the conductive structure. The resulting structure is a flip chip wherein only a select few C4 bumps use enhanced C4s (such as copper pedestals) reducing the chance of defects.
摘要:
A design structure to provide a package for a semiconductor chip that minimizes the stresses and strains that arise from differential thermal expansion in chip to substrate or chip to card interconnections. An improved set of design structure vias above the final copper metallization level that mitigate shocks during semiconductor assembly and testing. Other embodiments include design structures having varying micro-mechanical support structures that further minimize stress and strain in the semiconductor package.
摘要:
A design structure to provide a package for a semiconductor chip that minimizes the stresses and strains that arise from differential thermal expansion in chip to substrate or chip to card interconnections. An improved set of design structure vias above the final copper metallization level that mitigate shocks during semiconductor assembly and testing. Other embodiments include design structures having varying micro-mechanical support structures that further minimize stress and strain in the semiconductor package.
摘要:
Wire-bonded semiconductor structures using organic insulating material and methods of manufacture are disclosed. The method includes forming a metal wiring layer in an organic insulator layer. The method further includes forming a protective layer over the organic insulator layer. The method further includes forming a via in the organic insulator layer over the metal wiring layer. The method further includes depositing a metal layer in the via and on the protective layer. The method further includes patterning the metal layer with an etch chemistry that is damaging to the organic insulator layer.
摘要:
Disclosed is a chip and method of forming the chip with improved conductive pads that allow for flexible C4 connections with a chip carrier or with another integrated circuit chip. The pads have a three-dimensional geometric shape (e.g., a pyramid or cone shape) with a base adjacent to the surface of the chip, a vertex opposite the base and, optionally, mushroom-shaped cap atop the vertex. Each pad can include a single layer of conductive material or multiple layers of conductive material (e.g., a wetting layer stacked above a non-wetting layer). The pads can be left exposed to allow for subsequent connection to corresponding solder bumps on a chip carrier or a second chip. Alternatively, solder balls can be positioned on the conductive pads to allow for subsequent connection to corresponding solder-paste filled openings on a chip carrier or a second chip.
摘要:
The invention provides a semiconductor chip structure having at least one aluminum pad structure and a polyimide buffering layer under the aluminum pad structure, wherein the polyimide buffering layer is self-aligned to the aluminum pad structure, and a method of forming the same. The method includes forming a polyimide buffering layer on a substrate, forming an aluminum pad structure on the buffering layer, and, using the aluminum pad structure as a mask, etching the substrate to remove the polyimide buffering layer from the substrate everywhere except under the aluminum pad structure.
摘要:
A topographical feature is formed proximate to a conductive bond pad that is used to couple a solder bump to a semiconductor die. The topographical feature is separated from the conductive bond pad by a gap. In one embodiment, the topographical feature is formed at a location that is slightly beyond the perimeter of the solder bump, wherein an edge of the bump is aligned vertically to coincide with the gap separating the conductive bond pad from the topographical feature. The topographical feature provides thickness enhancement of a non-conductive layer disposed over the semiconductor die and the conductive bond pad and stress buffering.