摘要:
III-Nitride light emitting diodes having improved performance are provided. In one embodiment, a light emitting device includes a substrate, a nucleation layer disposed on the substrate, a defect reduction structure disposed above the nucleation layer, and an n-type III-Nitride semiconductor layer disposed above the defect reduction structure. The n-type layer has, for example, a thickness greater than about one micron and a silicon dopant concentration greater than or equal to about 1019 cm−3. In another embodiment, a light emitting device includes a III-Nitride semiconductor active region that includes at least one barrier layer either uniformly doped with an impurity or doped with an impurity having a concentration graded in a direction substantially perpendicular to the active region.
摘要:
A light-emitting semiconductor device comprises a III-Nitride active region and a III-Nitride layer formed proximate to the active region and having a thickness that exceeds a critical thickness for relaxation of strain in the III-Nitride layer. The III-Nitride layer may be a carrier confinement layer, for example. In another aspect of the invention, a light-emitting semiconductor device comprises a III-Nitride light emitting layer, an InxAlyGa1-x-yN (0≦x≦1, 0≦y≦1, x+y≦1), and a spacer layer interposing the light emitting layer and the InxAlyGa1-x-yN layer. The spacer layer may advantageously space the InxAlyGa1-x-yN layer and any contaminants therein apart from the light emitting layer. The composition of the III-Nitride layer may be advantageously selected to determine a strength of an electric field in the III-Nitride layer and thereby increase the efficiency with which the device emits light.
摘要翻译:发光半导体器件包括在有源区附近形成的III-氮化物有源区和III-氮化物层,其厚度超过III-氮化物层中的应变松弛的临界厚度。 例如,III-氮化物层可以是载流子限制层。 在本发明的另一方面中,一种发光半导体器件包括III族氮化物发光层,In-Al 2 O 3,Ga 1-xy, SUB> N(0 <= x <= 1,0,0 <= y <= 1,x + y <= 1),以及插入发光层和In < 1&lt; 1&gt; Ga 1-xy N层。 间隔层可以有利地将In和/或Al 2 Y 1 Ga 1-x-y N N层及其中的任何污染物与发光层隔开。 可以有利地选择III-氮化物层的组成以确定III-氮化物层中的电场的强度,从而提高器件发光的效率。
摘要:
A light emitting device in accordance with an embodiment of the present invention includes a first semiconductor layer of a first conductivity type having a first surface, and an active region formed overlying the first semiconductor layer. The active region includes a second semiconductor layer which is either a quantum well layer or a barrier layer. The second semiconductor layer is formed from a semiconductor alloy having a composition graded in a direction substantially perpendicular to the first surface of the first semiconductor layer. The light emitting device also includes a third semiconductor layer of a second conductivity type formed overlying the active region.
摘要:
A light emitting device in accordance with an embodiment of the present invention includes a first semiconductor layer of a first conductivity type having a first surface, and an active region formed overlying the first semiconductor layer. The active region includes a second semiconductor layer which is either a quantum well layer or a barrier layer. The second semiconductor layer is formed from a semiconductor alloy having a composition graded in a direction substantially perpendicular to the first surface of the first semiconductor layer. The light emitting device also includes a third semiconductor layer of a second conductivity type formed overlying the active region.
摘要:
A light emitting device and a method of increasing the light output of the device utilize a chirped multi-well active region to increase the probability of radiative recombination of electrons and holes within the light emitting active layers of the active region by altering the electron and hole distribution profiles within the light emitting active layers of the active region (i.e., across the active region). The chirped multi-well active region produces a higher and more uniform distribution of electrons and holes throughout the active region of the device by substantially offsetting carrier diffusion effects caused by differences in electron and hole mobility by using complementary differences in layer thickness and/or layer composition within the active region. Thus, the chirped design of the multi-well active region increases the probability of radiative recombination of electrons and holes within the light emitting active layers of the active region, which results in an increased light output of the device. The multi-well active region of the device may be chirped with respect to light emitting active layers and/or barrier layers of the active region. The light emitting device may be a III-V material LED, a II-VI material LED, a polymer or organic LED, a laser diode or an optical amplifier.
摘要:
A light emitting structure includes a semiconductor light emitting device capable of emitting first light having a first peak wavelength, a luminescent material capable of emitting second light having a second peak wavelength disposed over the semiconductor light emitting device, and a photonic band gap material disposed between the light emitting device and the luminescent material. The photonic band gap material is capable of transmitting the first light and reflecting the second light, regardless of the angle of incidence of the first and second light.
摘要:
A light-emitting semiconductor device includes a stack of layers including an active region. The active region includes a semiconductor selected from the group consisting of III-Phosphides, III-Arsenides, and alloys thereof. A superstrate substantially transparent to light emitted by the active region is disposed on a first side of the stack. First and second electrical contacts electrically coupled to apply a voltage across the active region are disposed on a second side of the stack opposite to the first side. In some embodiments, a larger fraction of light emitted by the active region exits the stack through the first side than through the second side. Consequently, the light-emitting semiconductor device may be advantageously mounted as a flip chip to a submount, for example.
摘要:
A light emitting device includes a region of first conductivity type, a region of second conductivity type, an active region, and an electrode. The active region is disposed between the region of first conductivity type and the region of second conductivity type and the region of second conductivity type is disposed between the active region and the electrode. The active region has a total thickness less than or equal to about 0.25λn and has a portion located between about 0.6λn and 0.75λn from the electrode, where λn is the wavelength of light emitted by the active region in the region of second conductivity type. In some embodiments, the active region includes a plurality of clusters, with a portion of a first cluster located between about 0.6λn and 0.75λn from the electrode and a portion of a second cluster located between about 1.2λn and 1.35λn from the electrode.
摘要:
A semiconductor light emitting device includes a light emitting layer sandwiched between two spacer layers. The difference between the net polarization in at least one of the spacer layers and the net polarization in the light emitting layer is less than in the device with conventional spacer layers, such as GaN spacer layers. The difference between the net polarization in at least one of the spacer layers and the net polarization in the light emitting layer is less than about 0.02 C/m2. In some embodiments, at least one of the spacer layers is a quaternary alloy of aluminum, indium, gallium, and nitrogen.
摘要翻译:半导体发光器件包括夹在两个间隔层之间的发光层。 间隔层中的至少一个间隔层的净极化与发光层中的净极化之间的差异小于具有常规间隔层的器件,例如GaN间隔层。 间隔层中的至少一个间隔层的净极化与发光层中的净极化之间的差异小于约0.02C / m 2。 在一些实施例中,间隔层中的至少一个是铝,铟,镓和氮的四元合金。
摘要:
An LED and a method of fabricating the LED which utilize controlled oxygen (O) doping to form at least one layer of the LED having an O dopant concentration which is correlated to the dominant emission wavelength of the LED. The O dopant concentration is regulated to be higher when the LED has been configured to have a longer dominant emission wavelength. Since the dominant emission wavelength is dependent on the composition of the active layer(s) of the LED, the O dopant concentration in the layer is related to the composition of the active layer(s). The controlled O doping improves the reliability while minimizing any light output penalty due to the introduction of O dopants. In an exemplary embodiment, the LED is an AlGaInP LED that includes a substrate, an optional distributed Bragg reflector layer, an n-type confining layer, an optional n-type set-back layer, an active region, an optional p-type set-back layer, a p-type confining layer and an optional window layer. In a preferred embodiment, the active region includes a multiplicity of active layers, where each active layer is 125 Angstroms thick or less and the active layers are separated from each other by barrier layers whose composition is Al0.5In0.5P and whose thickness is 100 Angstroms or less. In a preferred embodiment, both the p-type confining layer and the p-type set-back layer are doped with a controlled amount of O, depending on the dominant emission wavelength of the LED. In addition to the O doping, the p-type confining layer of the LED is preferably doped with a high amount of p-type dopants, such as Mg, Zn, C or Be. During high temperature thermal processing, this high concentration of p-type dopants then partially diffuses into the active region, resulting in a heavily p-type doped active region.