摘要:
Provided are a phase-change memory device using insulating nanoparticles, a flexible phase-change memory device and a method for manufacturing the same. The phase-change memory device includes an electrode, and a phase-change layer in which a phase change occurs depending on heat generated from the electrode, wherein insulating nanoparticles formed from a self-assembled block copolymer are provided between the electrode and the phase-change layer undergoing crystallization and amorphization.
摘要:
Provided are a phase-change memory device using insulating nanoparticles, a flexible phase-change memory device and a method for manufacturing the same. The phase-change memory device includes an electrode, and a phase-change layer in which a phase change occurs depending on heat generated from the electrode, wherein insulating nanoparticles formed from a self-assembled block copolymer are provided between the electrode and the phase-change layer undergoing crystallization and amorphization.
摘要:
There are provided a flexible nanocomposite generator and a method of manufacturing the same. A flexible nanocomposite generator according to the present invention includes a piezoelectric layer formed of a flexible matrix containing piezoelectric nanoparticles and carbon nanostructures; and electrode layers disposed on the upper and lower surfaces of both sides of the piezoelectric layer, in which according to a method for manufacturing a flexible nanocomposite generator according to the present invention and a flexible nanogenerator, it is possible to manufacture a flexible nanogenerator with a large area and a small thickness. Therefore, the nanogenerator may be used as a portion of a fiber or cloth. Accordingly, the nanogenerator according to the present invention generates power in accordance with bending of attached cloth, such that it is possible to continuously generate power in accordance with movement of a human body.
摘要:
There are provided a flexible nanocomposite generator and a method of manufacturing the same. A flexible nanocomposite generator according to the present invention includes a piezoelectric layer formed of a flexible matrix containing piezoelectric nanoparticles and carbon nanostructures; and electrode layers disposed on the upper and lower surfaces of both sides of the piezoelectric layer, in which according to a method for manufacturing a flexible nanocomposite generator according to the present invention and a flexible nanogenerator, it is possible to manufacture a flexible nanogenerator with a large area and a small thickness. Therefore, the nanogenerator may be used as a portion of a fiber or cloth. Accordingly, the nanogenerator according to the present invention generates power in accordance with bending of attached cloth, such that it is possible to continuously generate power in accordance with movement of a human body.
摘要:
A method of manufacturing LED display is provided. The method provides a sacrificial substrate on which RGB LED device layers are formed, respectively. The method etches and patterns the LED device layer to manufacture RGB LED devices, respectively. The method removes the sacrificial substrate in a lower side of the LED device. The method contacts a stamping processor to the RGB LED devices to separate the RGB LED devices from the sacrificial substrate. The method transfers the LED device, which is attached to the stamping processor, to a receiving substrate.
摘要:
A method of manufacturing LED display is provided. The method provides a sacrificial substrate on which RGB LED device layers are formed, respectively. The method etches and patterns the LED device layer to manufacture RGB LED devices, respectively. The method removes the sacrificial substrate in a lower side of the LED device. The method contacts a stamping processor to the RGB LED devices to separate the RGB LED devices from the sacrificial substrate. The method transfers the LED device, which is attached to the stamping processor, to a receiving substrate.
摘要:
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
摘要:
The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.
摘要:
The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.
摘要:
Provided are a method of manufacturing a flexible device and the flexible device, a solar cell, and a light emitting device. The method of manufacturing a flexible device includes providing a device layer on a sacrificial substrate, contacting a flexible substrate on one side surface of the device layer, and removing the sacrificial substrate. A large area device may be transferred onto the flexible substrate with superior alignment to realize and manufacture the flexible device. In addition, since mass production is possible, the economic feasibility may be superior. Also, when a large area solar cell having a thin thickness is manufactured, since a limitation such as twisting of a thin film of a solar cell may be effectively solved, the economic feasibility and stability may be superior.