Abstract:
The present disclosure relates to compounds of formulas (A) and (I), pharmaceutically acceptable salts thereof, and solvates of any of the foregoing, pharmaceutical compositions comprising the same, methods of preparing the same, intermediate compounds useful for preparing the same, and methods for treating or prophylaxis of diseases, in particular cancer, such as colorectal cancer, using the same.
Abstract:
Provided herein are a use of thioether compounds of formula I as nitrification inhibitors, and agricultural mixtures and compositions including the thioether compounds.
Abstract:
The present disclosure relates to a compound of formula (Ia), (Ib), (IIa), and (IIb): which are useful in the treatment of a Retroviridae viral infection including an infection caused by the HIV virus.
Abstract:
Nanoparticles zwitterionic polymers grafted thereto or grafted therefrom, and methods for making and using the nanoparticles. Zwitterionic nanogels, and methods for making and using the nanogels.
Abstract:
K-Ras is the most frequently mutated oncogene in human cancer. Disclosed herein are compositions and methods for modulating K-Ras and treating cancer.
Abstract:
The present invention provides (1) a sulfone compounds having a propargyl group, (2) a nonaqueous electrolytic solution for lithium secondary batteries, which comprises an electrolyte salt dissolved in a nonaqueous solvent and contains a sulfone compound having a specific structure that has an SO2 group with a propargyl group or a vinyl group bonding thereto, in an amount of from 0.01 to 10% by weight of the nonaqueous electrolytic solution, and which can prevent gas generation and is excellent in battery characteristics such as cycle property and the like, and (3) a lithium secondary battery comprising a positive electrode, a negative electrode and a nonaqueous electrolytic solution of an electrolyte salt dissolved in a nonaqueous solvent, wherein the nonaqueous electrolytic solution contains a sulfone compound having a specific structure, in an amount of from 0.01 to 10% by weight of the nonaqueous electrolytic solution.
Abstract:
The novel C dialdehyde compound which can be efficiently utilized in the synthesis of carotenoid compounds based on the sulfone chemistry, the preparation method of the same, and the expeditious and practical synthetic processes for lycopene and β-carotene by the use of the above novel compound are disclosed. The syntheses of lycopene and β-carotene are characterized by the processes of the coupling reaction between two equivalents of geranyl sulfone or cyclic geranyl sulfone and the above C dialdehyde, the functional group transformation reactions of the diol in the resulting C 40 coupling products to X's (either halogens or ethers), and the double elimination reactions of the functional groups of the benzenesulfonyl and X to produce the fully conjugated polyene chain of the carotenoids.
Abstract:
The invention relates to ionic compounds in which the anionic load has been delocalized. A compound disclosed by the invention includes an anionic portion combined with at least one cationic portion Mm+ in sufficient numbers to ensure overall electronic neutrality; the compound is further comprised of M as a hydroxonium, a nitrosonium NO+, an ammonium —NH4+, a metallic cation with the valence m, an organic cation with the valence m, or an organometallic cation with the valence m. The anionic load is carried by a pentacyclical nucleus of tetrazapentalene derivative bearing electroattractive substituents. The compounds can be used notably for ionic conducting materials, electronic conducting materials, colorant, and the catalysis of various chemical reactions.
Abstract:
The novel C dialdehyde compound which can be efficiently utilized in the synthesis of carotenoid compounds based on the sulfone chemistry, the preparation method of the same, and the expeditious and practical synthetic processes for lycopene and β-carotene by the use of the above novel compound are disclosed. The syntheses of lycopene and β-carotene are characterized by the processes of the coupling reaction between two equivalents of geranyl sulfone or cyclic geranyl sulfone and the above C dialdehyde, the functional group transformation reactions of the diol in the resulting C 40 coupling products to X's (either halogens or ethers), and the double elimination reactions of the functional groups of the benzenesulfonyl and X to produce the fully conjugated polyene chain of the carotenoids.
Abstract:
The invention is related to ionic compounds, derivatives of malononitrile, in which the anionic load has been displaced. An ionic compound disclosed by the invention includes an anionic portion combined with at least one cationic portion Mnullm in sufficient number to ensure overall electronic neutrality; the compound is further comprised of M as a hydroxonium, a nitrosonium NOnull, an ammonium nullNH4null, a metallic cation with the valence m, an organic cation with the valence m, or an organometallic cation with the valence m. The anionic portion corresponds to one of the formulas RDnullYnullC(CnullN)2null or Z-C(CnullN)2null in which Z is an electroattractive group, RD is an organic radical, and Y is a carbonyl, a thiocarbonyl, a sulfonyl, a sulfinyl, or a phosphonyl. The compounds can be used notably for ionic conducting materials, electronic conducting materials, colorants, and the catalysis of various chemical reactions.