Abstract:
A method of forming a semiconductor package having a large capacity and a reduced or minimized volume includes: attaching a semiconductor substrate on a support substrate using an adhesive layer, wherein the semiconductor substrate includes a plurality of first semiconductor chips and a chip cutting region, wherein first and second ones of the plurality of first semiconductor chips are separated each other by the chip cutting region, and the semiconductor substrate includes a first surface on which an active area is formed and a second surface opposite to the first surface; forming a first cutting groove having a first kerf width, between the first and second ones of the plurality of first semiconductor chips, so that the semiconductor substrate is separated into a plurality of first semiconductor chips; attaching a plurality of second semiconductor chips corresponding to the first semiconductor chips, respectively, to the plurality of first semiconductor chips; forming a molding layer so as to fill the first cutting groove; and forming a second cutting groove having a second kerf width that is less than the first kerf width, in the molding layer, so as to separate the molding layer into individual molding layers covering one of the plurality of first semiconductor chips and corresponding one of the plurality of second semiconductor chips.
Abstract:
A method of manufacturing a chip-stacked semiconductor package, the method including preparing a base wafer including a plurality of first chips each having a through-silicon via (TSV); bonding the base wafer including the plurality of first chips to a supporting carrier; preparing a plurality of second chips; forming stacked chips by bonding the plurality of second chips to the plurality of first chips; sealing the stacked chips with a sealing portion; and separating the stacked chips from each other.
Abstract:
A method of manufacturing a chip-stacked semiconductor package, the method including preparing a base wafer including a plurality of first chips each having a through-silicon via (TSV); bonding the base wafer including the plurality of first chips to a supporting carrier; preparing a plurality of second chips; forming stacked chips by bonding the plurality of second chips to the plurality of first chips; sealing the stacked chips with a sealing portion; and separating the stacked chips from each other.
Abstract:
A semiconductor device capable of improving the efficiency of dispersing heat via a dummy pad. The semiconductor device may be included in a semiconductor package, stack module, card, or system. Also disclosed is a method of manufacturing the semiconductor device. In the semiconductor device, a semiconductor substrate has a first surface and a second surface opposite to the first surface, and at least one conductive pad is arranged on a predetermined region of the first surface. At least one dummy pad is arranged on the first or second surface, and is not electrically coupled to the at least one conductive pad. The dummy pad or pads may be used to disperse heat. Accordingly, it is possible to increase the efficiency of dispersing heat of a semiconductor device, thereby improving the yield of semiconductor devices.
Abstract:
A method of forming a semiconductor package includes attaching a semiconductor substrate on a support substrate, wherein the semiconductor substrate includes a plurality of first semiconductor chips and a chip cutting region that separates respective ones of the semiconductor chips. A first cutting groove is formed that has a first kerf width between first and second ones of the plurality of first semiconductor chips. A plurality of second semiconductor chips is attached to the plurality of first semiconductor chips. A molding layer is formed so as to fill the first cutting groove and a second cutting groove having a second kerf width that is less than the first kerf width is formed in the molding layer so as to form individual molding layers covering one of the plurality of first semiconductor chips and one of the plurality of second semiconductor chips.
Abstract:
A method of forming a semiconductor package includes attaching a semiconductor substrate on a support substrate, wherein the semiconductor substrate includes a plurality of first semiconductor chips and a chip cutting region that separates respective ones of the semiconductor chips. A first cutting groove is formed that has a first kerf width between first and second ones of the plurality of first semiconductor chips. A plurality of second semiconductor chips is attached to the plurality of first semiconductor chips. A molding layer is formed so as to fill the first cutting groove and a second cutting groove having a second kerf width that is less than the first kerf width is formed in the molding layer so as to form individual molding layers covering one of the plurality of first semiconductor chips and one of the plurality of second semiconductor chips.
Abstract:
A method of manufacturing a chip-stacked semiconductor package, the method including preparing a base wafer including a plurality of first chips each having a through-silicon via (TSV); bonding the base wafer including the plurality of first chips to a supporting carrier; preparing a plurality of second chips; forming stacked chips by bonding the plurality of second chips to the plurality of first chips; sealing the stacked chips with a sealing portion; and separating the stacked chips from each other.
Abstract:
A semiconductor device capable of improving the efficiency of dispersing heat via a dummy pad. The semiconductor device may be included in a semiconductor package, stack module, card, or system. Also disclosed is a method of manufacturing the semiconductor device. In the semiconductor device, a semiconductor substrate has a first surface and a second surface opposite to the first surface, and at least one conductive pad is arranged on a predetermined region of the first surface. At least one dummy pad is arranged on the first or second surface, and is not electrically coupled to the at least one conductive pad. The dummy pad or pads may be used to disperse heat. Accordingly, it is possible to increase the efficiency of dispersing heat of a semiconductor device, thereby improving the yield of semiconductor devices.
Abstract:
A semiconductor light emitting device package is provided having a light transmissive substrate, and a light emitting structure including a first conductivity-type semiconductor layer, an active layer, and a second conductivity-type semiconductor layer sequentially laminated on the light transmissive substrate. The light emitting structure comprises a first surface and a second opposing surface facing the light transmissive substrate. The semiconductor light emitting device package comprises a via penetrating the second conductivity-type semiconductor layer and the active layer, and exposing the first conductivity-type semiconductor layer. A first electrode has a first portion disposed on the first surface, and a second portion extending into the via and contacting the first conductivity-type semiconductor layer. An insulating layer is disposed between the first electrode, and each of the second conductivity type semiconductor layer, the active layer, and the first surface. A second electrode is disposed on the first surface.
Abstract:
A method of forming a semiconductor package having a large capacity and a reduced or minimized volume includes: attaching a semiconductor substrate on a support substrate using an adhesive layer, wherein the semiconductor substrate includes a plurality of first semiconductor chips and a chip cutting region, wherein first and second ones of the plurality of first semiconductor chips are separated each other by the chip cutting region, and the semiconductor substrate includes a first surface on which an active area is formed and a second surface opposite to the first surface; forming a first cutting groove having a first kerf width, between the first and second ones of the plurality of first semiconductor chips, so that the semiconductor substrate is separated into a plurality of first semiconductor chips; attaching a plurality of second semiconductor chips corresponding to the first semiconductor chips, respectively, to the plurality of first semiconductor chips; forming a molding layer so as to fill the first cutting groove; and forming a second cutting groove having a second kerf width that is less than the first kerf width, in the molding layer, so as to separate the molding layer into individual molding layers covering one of the plurality of first semiconductor chips and corresponding one of the plurality of second semiconductor chips.