Abstract:
The present invention relates to a high reliability field effect power device and a manufacturing method thereof. A method of manufacturing a field effect power device includes sequentially forming a transfer layer, a buffer layer, a barrier layer and a passivation layer on a substrate, patterning the passivation layer by etching a first region of the passivation layer, and forming at least one electrode on the first region of the barrier layer exposed by patterning the passivation layer, wherein the first region is provided to form the at least one electrode, and the passivation layer may include a material having a wider bandgap than the barrier layer to prevent a trapping effect and a leakage current of the field effect power device.
Abstract:
Disclosed is a manufacturing method of a high electron mobility transistor. The method includes: forming a source electrode and a drain electrode on a substrate; forming a first insulating film having a first opening on an entire surface of the substrate, the first opening exposing a part of the substrate; forming a second insulating film having a second opening within the first opening, the second opening exposing a part of the substrate; forming a third insulating film having a third opening within the second opening, the third opening exposing a part of the substrate; etching a part of the first insulating film, the second insulating film and the third insulating film so as to expose the source electrode and the drain electrode; and forming a T-gate electrode on a support structure including the first insulating film, the second insulating film and the third insulating film.
Abstract:
Provided is a feedback amplifier. The feedback amplifier includes: an amplification circuit unit amplifying a burst packet signal inputted from an input terminal and outputting the amplified voltage to an output terminal; a feedback circuit unit disposed between the input terminal and the output terminal and controlling whether to apply a fixed resistance value to a signal outputted to the output terminal; a packet signal detection unit detecting a peak value of a burst packet signal from the output terminal and controlling whether to apply the fixed resistance value; and a bias circuit unit generating a bias voltage, wherein the feedback circuit unit determines a feedback resistance value to change the fixed resistance value in response to at least one control signal and adjusts a gain by receiving the bias voltage.
Abstract:
The present invention relates to a GaN transistor, and a method of fabricating the same, in which a structure of a bonding pad is improved by forming an ohmic metal layer at edges of the bonding pad of a source, a drain, and a gate so as to be appropriate to wire-bonding or a back-side via-hole forming process. Accordingly, adhesive force between a metal layer of the bonding pad and a GaN substrate is enhanced by forming the ohmic metal at the edges of the bonding pad during manufacturing of the GaN transistor, thereby minimizing a separation phenomenon of a pad layer during the wire-bonding or back-side via-hole forming process, and improving reliability of a device.
Abstract:
Provided herein is a component package including a matching unit and a matching method thereof, the matching unit including: a substrate; a transmission line formed on the substrate, the transmission line being connected to a terminal of the component package; a bonding wire electrically connecting the transmission line and a central component; and a capacitor unit having a plurality of capacitors electrically connected with the transmission line by wiring connection, wherein an inductance of the matching unit is variable by adjusting a length of the bonding wire, and a capacitance of the matching unit is variable by increasing or reducing the number of capacitors electrically connected to the transmission line, of among the capacitors inside the capacitor unit, by extending or cutting off the wiring connection.
Abstract:
Provided is a feedback amplifier. The feedback amplifier includes: an amplification circuit unit amplifying a bust packet signal inputted from an input terminal and outputting the amplified voltage to an output terminal; a feedback circuit unit disposed between the input terminal and the output terminal and controlling whether to apply a fixed resistance value to a signal outputted to the output terminal; a packet signal detection unit detecting a peak value of a bust packet signal from the output terminal and controlling whether to apply the fixed resistance value; and a bias circuit unit generating a bias voltage, wherein the feedback circuit unit determines a feedback resistance value to change the fixed resistance value in response to at least one control signal and adjusts a gain by receiving the bias voltage.
Abstract:
A field effect transistor is provided. The transistor may include a source electrode and a drain electrode provided spaced apart from each other on a substrate and a ‘+’-shaped gate electrode provided on a portion of the substrate located between the source and drain electrodes.
Abstract:
Provided herein is a patch antenna including a multilayered substrate on which a plurality of dielectric layers are laminated; at least one metal pattern layer disposed between the plurality of dielectric layers outside a central area of the multilayered substrate; an antenna patch disposed on an upper surface of the multilayered substrate and within the central area; a ground layer disposed on a lower surface of the multilayered substrate; a plurality of connection via patterns penetrating the plurality of dielectric layers to connect the metal pattern layer and the ground layer, and surrounding the central area; a transmission line comprising a first transmission line unit disposed on the upper surface of the multilayered substrate and located outside the central area, and a second transmission line unit disposed on the upper surface of the multilayered substrate and located within the central area; and an impedance transformer located below the second transmission line unit within the central area of the multilayered substrate.
Abstract:
Disclosed is a method of manufacturing a field effect type compound semiconductor device in which leakage current of a device is decreased and breakdown voltage is enhanced. The method of manufacturing a field effect type compound semiconductor device includes: stacking an active layer and an ohmic layer on a substrate and forming a first oxide layer on the ohmic layer; forming a mesa region in predetermined regions of the first oxide layer, the ohmic layer, and the active layer; planarizing the mesa region after forming a nitride layer by evaporating a nitride on the mesa region; forming an ohmic electrode on the first oxide layer; forming a minute gate resist pattern after forming a second oxide layer on a semiconductor substrate in which the ohmic electrode is formed and forming a minute gate pattern having a under-cut shaped profile by dry-etching the first oxide layer, the nitride layer, and the second oxide layer; forming a gate recess region by forming a head pattern of a gamma gate electrode on the semiconductor substrate; and forming the gamma gate electrode by evaporating refractory metal on the semiconductor substrate in which the gate recess region is formed.
Abstract:
Provided is a semiconductor device testing apparatus including a first socket configured to load a package, on which a semiconductor device to be tested may be mounted, and a second socket coupled to the first socket. The first socket may include an upper part including a hole configured to accommodate the package and a terminal pad provided at both side edges of the hole to hold input and output terminals of the package, and a lower part including a heating room, in which a heater and a temperature sensing part may be provided, the heater being configured to heat the semiconductor device and the temperature sensing part being configured to measure temperature of the semiconductor device. The second socket may include a probe card with a pattern that may be configured to receive test signals from an external power source.