Abstract:
A multichip module package uses bond wire with plastic resin on one side of a lead frame to package an integrated circuit and flip chip techniques to attach one or more mosfets to the other side of the lead frame. The assembled multichip module 30 has an integrated circuit controller 14 on a central die pad. Wire bonds 16 extend from contact areas on the integrated circuit to outer leads 2.6 of the lead frame 10. On the opposite, lower side of the central die pad, the sources and gates of the mosfets 24, 26 are bump or stud attached to the half etched regions of the lead frame. The drains 36 of the mosfets and the ball contacts 22.1 on the outer leads are soldered to a printed circuit board.
Abstract:
A semiconductor die package is disclosed. In one embodiment, the die package includes a semiconductor die including a first surface and a second surface, and a leadframe structure having a die attach region and a plurality of leads extending away from the die attach region. The die attach region includes one or more apertures. A molding material is around at least portions of the die attach region of the leadframe structure and the semiconductor die. The molding material is also within the one or more apertures.
Abstract:
A semiconductor device that does not include a molded body or package. The semiconductor device includes a substrate and a die coupled to the substrate. The die is coupled to the substrate such that the source and gate regions of the die, assuming a MOSFET-type device, are coupled to the substrate. Solder balls are provided adjacent to the die such that when the semiconductor device is coupled to a printed circuit board, the exposed surface of the die serves as a drain connection while the solder balls serve as the source and gate connections.
Abstract:
A chip device that includes a leadframe, a die and a mold compound. The backside of the die is metallized and exposed through a window defined within a mold compound that encapsulates the die when it is coupled to the leadframe. Leads on the leadframe are coupled to source and gate terminals on the die while the metallized backside of the die serves as the drain terminals.
Abstract:
A semiconductor die package is disclosed. In one embodiment, the die package includes a semiconductor die including a first surface and a second surface, and a leadframe structure having a die attach region and a plurality of leads extending away from the die attach region. The die attach region includes one or more apertures. A molding material is around at least portions of the die attach region of the leadframe structure and the semiconductor die. The molding material is also within the one or more apertures.
Abstract:
Embodiments of the invention are directed to semiconductor die packages. One embodiment of the invention is directed to a semiconductor die package including, (a) a semiconductor die including a first surface and a second surface, (b) a source lead structure including protruding region having a major surface, the source lead structure being coupled to the first surface, (c) a gate lead structure being coupled to the first surface, and (d) a molding material around the source lead structure and the semiconductor die, where the molding material exposes the second surface of the semiconductor die and the major surface of the source lead structure.
Abstract:
A packaged semiconductor device (a wafer-level chip scale package) containing a conductive adhesive material as an electrical interconnect route between the semiconductor die and a patterned conductive substrate is described. The patterned conductive substrate acts not only as a substrate, but also as a redistribution layer that converts the dense pad layout of the die to a larger array configuration of the solder balls in the circuit board. Using the invention allows the formation of a lower priced chip scale package that also overcomes the restriction of the die size used in die-sized chip packages and the input-output pattern that can be required by the printed circuit board. Thus, the invention can provide a familiar pitch (i.e.,interface) to the printed circuit board for any small die.
Abstract:
A chip device that includes a leadframe, a die and a mold compound. The backside of the die is metallized and exposed through a window defined within a mold compound that encapsulates the die when it is coupled to the leadframe. Leads on the leadframe are coupled to source and gate terminals on the die while the metallized backside of the die serves as the drain terminals.
Abstract:
A method for processing a semiconductor substrate is disclosed. The method includes providing a mask having an aperture on a semiconductor substrate having a conductive region. An aperture in the mask is disposed over the conductive region. A pre-formed conductive column is placed in the aperture and is bonded to the conductive region.