摘要:
A nonpolar III-nitride film grown on a miscut angle of a substrate, in order to suppress the surface undulations, is provided. The surface morphology of the film is improved with a miscut angle towards an a-axis direction comprising a 0.15° or greater miscut angle towards the a-axis direction and a less than 30° miscut angle towards the a-axis direction.
摘要:
A method for fabricating a high quality freestanding nonpolar and semipolar nitride substrate with increased surface area, comprising stacking multiple films by growing the films one on top of each other with different and non-orthogonal growth directions.
摘要:
An (Al,Ga,In)N-based light emitting diode (LED), comprising a p-type surface of the LED bonded with a transparent submount material to increase light extraction at the p-type surface, wherein the LED is a substrateless membrane.
摘要:
A III-nitride light emitting diode (LED) and method of fabricating the same, wherein at least one surface of a semipolar or nonpolar plane of a III-nitride layer of the LED is textured, thereby forming a textured surface in order to increase light extraction. The texturing may be performed by plasma assisted chemical etching, photolithography followed by etching, or nano-imprinting followed by etching.
摘要:
A method of growing non-polar m-plane III-nitride film, such as GaN, AlN, AlGaN or InGaN, wherein the non-polar m-plane III-nitride film is grown on a suitable substrate, such as an m-SiC, m-GaN, LiGaO2 or LiAlO2 substrate, using metalorganic chemical vapor deposition (MOCVD). The method includes performing a solvent clean and acid dip of the substrate to remove oxide from the surface, annealing the substrate, growing a nucleation layer, such as aluminum nitride (AlN), on the annealed substrate, and growing the non-polar m-plane III-nitride film on the nucleation layer using MOCVD.
摘要:
A method for forming non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices. Non-polar (11 20) a-plane GaN layers are grown on an r-plane (1 102) sapphire substrate using MOCVD. These non-polar (11 20) a-plane GaN layers comprise templates for producing non-polar (Al,B,In,Ga)N quantum well and heterostructure materials and devices.
摘要:
A method for growth and fabrication of semipolar (Ga, Al, In, B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga, Al, In, B)N template or nucleation layer on the substrate, and growing the semipolar (Ga, Al, In, B)N thin films, heterostructures or devices on the planar semipolar (Ga, Al, In, B)N template or nucleation layer. The method results in a large area of the semipolar (Ga, Al, In, B)N thin films, heterostructures, and devices being parallel to the substrate surface.
摘要:
A structure for improving the mirror facet cleaving yield of (Ga,Al,In,B)N laser diodes grown on nonpolar or semipolar (Ga,Al,In,B)N substrates. The structure comprises a nonpolar or semipolar (Ga,Al,In,B)N laser diode including a waveguide core that provides sufficient optical confinement for the device's operation in the absence of p-type doped aluminum-containing waveguide cladding layers, and one of more n-type doped aluminum-containing layers that can be used to assist with facet cleaving along a particular crystallographic plane.
摘要:
A method for increasing the luminous efficacy of a white light emitting diode (WLED), comprising introducing optically functional interfaces between an LED die and a phosphor, and between the phosphor and an outer medium, wherein at least one of the interfaces between the phosphor and the LED die provides a reflectance for light emitted by the phosphor away from the outer medium and a transmittance for light emitted by the LED die. Thus, a WLED may comprise a first material which surrounds an LED die, a phosphor layer, and at least one additional layer or material which is transparent for direct LED emission and reflective for the phosphor emission, placed between the phosphor layer and the first material which surrounds the LED die.
摘要:
A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.