Abstract:
A method and apparatus for treating gas by irradiation with an electron beam. Flue gas discharged from a fuel combustion facility is treated with an electron beam to remove sulfur oxides and/or nitrogen oxides. Ammonia is added to the flue gas and the mixed gas is irradiated with an electron beam in a process vessel. A dust collector receives the gas and collects a by-product mainly composed of ammonium sulfate and/or ammonium nitrate which is produced by the reaction in the process vessel. A gas-contacting portion extending from the process vessel to the dust collector is cooled either wholly or partly, to a dew point of the gas or below.
Abstract:
A method and integrated apparatus for disposing of an organic halogen compound comprising phosphorus and at least one element selected from the group consisting of sulfur and a metal, in addition to carbon, hydrogen and oxygen, in atomic bond, comprises the steps of ionizing the compound to obtain ionization products, splitting up the ionization products by electrodialysis to obtain ionic end products and residual organic substances, and disposing of the ionic end products and residual organic substances.
Abstract:
A system and method are provided for the separation of hydrogen from natural gas feedstock to form hydrocarbon radicals. Aspects of the system include perpendicular magnetic and electric fields, a method of radical formation that separates hydrogen from the reaction process, and a separation method based on centrifugal forces and phase transitions. The gases rotate in the chamber due to the Lorentz force without any mechanical motion. Rotation separates gases and liquids by centrifugal force. The lighter species are collected from the mid region endpoint of the apparatus and fed back for further reaction. A new concept of controlled turbulence is introduced to mix various species. A novel magnetic field device is introduced comprised of two specially magnetized cylinders. A novel control of temperatures, pressures, electron densities and profiles by, RF, microwaves, UV and rotation frequency are possible especially when atomic, molecular, cyclotron resonances are taken into account. The electrodes can be coated with catalysts; the entire apparatus can be used as a new type of chemical reactor.
Abstract:
A method and a system for producing a change in a medium. The method places in a vicinity of the medium at least one energy modulation agent. The method applies an initiation energy to the medium. The initiation energy interacts with the energy modulation agent to directly or indirectly produce the change in the medium. The system includes an initiation energy source configured to apply an initiation energy to the medium to activate the energy modulation agent.
Abstract:
A method and a system for producing a change in a medium. The method places in a vicinity of the medium at least one energy modulation agent. The method applies an initiation energy to the medium. The initiation energy interacts with the energy modulation agent to directly or indirectly produce the change in the medium. The system includes an initiation energy source configured to apply an initiation energy to the medium to activate the energy modulation agent.
Abstract:
A method and a system for producing a change in a medium disposed in an artificial container. The method places in a vicinity of the medium at least one of a plasmonics agent and an energy modulation agent. The method applies an initiation energy through the artificial container to the medium. The initiation energy interacts with the plasmonics agent or the energy modulation agent to directly or indirectly produce the change in the medium. The system includes an initiation energy source configured to apply an initiation energy to the medium to activate the plasmonics agent or the energy modulation agent.
Abstract:
Methods and systems are described for processing cellulosic and lignocellulosic materials into useful intermediates and products, such as energy and fuels. For example, conveying systems and methods, such as highly efficient vibratory conveyors, are described for the processing of the cellulosic and lignocellulosic materials.
Abstract:
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful intermediates and products, such as energy, fuels, foods or materials. For example, systems and methods are described that can be used to treat feedstock materials, such as cellulosic and/or lignocellulosic materials, while cooling equipment and the biomass to prevent overheating and possible distortion and/or degradation. The biomass is conveyed by a conveyor, which conveys the biomass under an electron beam from an electron beam accelerator. The conveyor can be cooled with cooling fluid. The conveyor can also vibrate to facilitate exposure to the electron beam. The conveyor can be configured as a trough that can be optionally cooled.
Abstract:
This document provides methods, systems, and devices for inducing a decomposition reaction by directing x-rays towards a location including a particular compound. The x-rays can have an irradiation energy that corresponds to a bond distance of a bond in the particular compound in order to break that bond and induce a decomposition of that particular compound. In some cases, the particular compound is a hazardous substance or part of a hazardous substance. In some cases, the particular compound is delivered to a desired location in an organism and x-rays induce a decomposition reaction that creates a therapeutic substance (e.g., a toxin that kills cancer cells) in the location of the organism. In some cases, the particular compound decomposes to produce a reactant in a reactor apparatus (e.g., fuel cell or semiconductor fabricator).