Abstract:
An ion generator is provided with: an arc chamber that is at least partially made up of a material containing carbon; a thermal electron emitter that emits thermal electrons into the arc chamber; and a gas introducer that introduces a source gas and a compound gas into the arc chamber. The source gas to be introduced into the arc chamber contains a halide gas, and the compound gas to be introduced into the arc chamber contains a compound having carbon atoms and hydrogen atoms.
Abstract:
A high brightness ion source with a gas chamber includes multiple channels, wherein the multiple channels each have a different gas. An electron beam is passed through one of the channels to provide ions of a certain species for processing a sample. The ion species can be rapidly changed by directing the electrons into another channel with a different gas species and processing a sample with ions of a second species. Deflection plates are used to align the electron beam into the gas chamber, thereby allowing the gas species in the focused ion beam to be switched quickly.
Abstract:
The present disclosure relates to a gas field ion source comprising a housing, an electrically conductive tip arranged within the housing, a gas supply for supplying one or more gases to the housing, wherein the one or more gases comprise neon or a noble gas with atoms having a mass larger than neon, and an extractor electrode having a hole to permit ions generated in the neighborhood of the tip to pass through the hole. A surface of the extractor electrode facing the tip can be made of a material having a negative secondary ion sputter rate of less than 10−5 per incident neon ion.
Abstract:
The purpose of the present invention is to provide a charged particle gun using merely an electrostatic lens, said charged particle gun being relatively small and having less aberration, and to provide a field emission-type charged particle gun having high luminance even with a high current. This charged particle gun has: a charged particle source; an acceleration electrode that accelerates charged particles emitted from the charged particle source; a control electrode, which is disposed further toward the charged particle source side than the acceleration electrode, and which has a larger aperture diameter than the aperture diameter of the acceleration electrode; and a control unit that controls, on the basis of a potential applied to the acceleration electrode, a potential to be applied to the control electrode.
Abstract:
Provided is an ion beam processing apparatus including an ion generation chamber, a processing chamber, and electrodes to form an ion beam by extracting ions generated in the ion generation chamber to the processing chamber. The electrodes includes a first electrode disposed close to the ion generation chamber and provided with an ion passage hole to allow passage of the ions, and a second electrode disposed adjacent to the first electrode and closer to the processing chamber than the first electrode is, and provided with an ion passage hole to allow passage of the ions. The apparatus also includes a power unit which applies different electric potentials to the first electrode and the second electrode, respectively, so as to accelerate the ions generated by an ion generator in the ion generation chamber. A material of the first electrode is different from a material of the second electrode.
Abstract:
A nozzle assembly used for performing gas cluster ion beam (GCIB) etch processing of various materials is described. In particular, the nozzle assembly includes two or more conical nozzles that are aligned such that they are both used to generate the same GCIB. The first conical nozzle may include the throat that initially forms the GCIB and the second nozzle may form a larger conical cavity that may be appended to the first conical nozzle. A transition region may be disposed between the two conical nozzles that may substantially cylindrical and slightly larger than the largest diameter of the first conical nozzle.
Abstract:
The present invention provides methods and systems for an ion generator mounting device for application of bipolar ionization to airflow within a conduit, the device includes a housing for mounting to the conduit having an internal panel within the enclosure, and an arm extending from the housing for extension into the conduit and containing at least one opening. At least one coupling for mounting an ion generator to the arm oriented with an axis extending between a pair of electrodes of the ion generator being generally perpendicular to a flow direction of the airflow within the conduit.
Abstract:
A plasma chamber having improved controllability of the ion density of the extracted ribbon ion beam is disclosed. A plurality of pairs of RF biased electrodes is disposed on opposite sides of the extraction aperture in a plasma chamber. In some embodiments, one of each pair of RF biased electrodes is biased at the extraction voltage, while the other of each pair is coupled to a RF bias power supply, which provides a RF voltage having a DC component and an AC component. In another embodiment, both of the electrodes in each pair are coupled to a RF biased power supply. A blocker may be disposed in the plasma chamber near the extraction aperture. In some embodiments, RF biased electrodes are disposed on the blocker.
Abstract:
The present disclosure relates to a gas field ion source comprising a housing, an electrically conductive tip arranged within the housing, a gas supply for supplying one or more gases to the housing, wherein the one or more gases comprise neon or a noble gas with atoms having a mass larger than neon, and an extractor electrode having a hole to permit ions generated in the neighborhood of the tip to pass through the hole. A surface of the extractor electrode facing the tip can be made of a material having a negative secondary ion sputter rate of less than 10−5 per incident neon ion.
Abstract:
An ion implantation apparatus includes a scanning unit scanning the ion beams in a horizontal direction perpendicular to the reference trajectory and a downstream electrode device disposed downstream of the scanning electrode device. The scanning electrode device includes a pair of scanning electrodes disposed to face each other in the horizontal direction with the reference trajectory interposed therebetween. The downstream electrode device includes an electrode body configured such that, with respect to an opening width in a vertical direction perpendicular to both the reference trajectory and the horizontal direction and/or an opening thickness in a direction along the reference trajectory, the opening width and/or the opening thickness in a central portion in which the reference trajectory is disposed is different from the opening width and/or the opening thickness in the vicinity of a position facing the downstream end of the scanning electrode.