Abstract:
A non-deleterious method for producing a continuous conductive circuit upon a non-conductive substrate can begin with the application of a metallic base layer upon a surface of a non-conductive substrate. A circuit pattern can be created within the metallic base layer based upon a circuit design. The metallic base layer comprising the circuit pattern can be physically separated from the remainder of the metallic base layer on the non-conductive substrate. The region of the non-conductive substrate surface that encloses the circuit pattern can be called the plating region. The remainder of the non-conductive substrate surface can be called the non-plating region. A first metal layer can be added upon the metallic base layer. A second metal layer can be added upon the first metal layer of the plating region. The second metal layer can be electrically conductive and restricted from forming on the first metal layer of the non-plating region.
Abstract:
An electroplating solution and method for producing an electroplating solution containing a gallium salt, an ionic compound and a solvent that results in a gallium thin film that can be deposited on a substrate.
Abstract:
[Problem] To provide a negative electrode collector for lithium ion secondary batteries, having a high strength and a large discharge capacity.[Means for Resolution] A negative electrode collector using a copper-covered steel foil 10 for carrying a negative electrode active material for lithium ion secondary batteries, which has a steel sheet 6 as the core material thereof and has, on both surfaces thereof, a copper covering layer 7 having a mean thickness tCu of from 0.02 to 5.0 μm on each surface, and of which the total mean thickness, t, including the copper covering layer 7 is from 3 to 100 μm with tCu/t of at most 0.3. To the steel sheet 6, for example, applicable is common steel, austenitic stainless steel or ferritic stainless steel. The copper covering layer 7 is, for example, a copper electroplating layer (including one rolled after plating). On the surface of the copper covering layer 7, for example, a carbon-based active material layer that has been densified through strong roll pressing is formed, and the copper-covered steel foil 10 and the carbon-based active material layer constitute the negative electrode collector.
Abstract:
A method for manufacturing a resonance tube includes: mixing powder materials, to form homogeneous powder particles, where the powder materials comprise iron powder with a weight proportion of 50% to 90%, at least one of copper powder and steel powder with a weight proportion of 1% to 30%, and an auxiliary material with a weight proportion of 1% to 20%; pressing and molding the powder particles, to form a resonance tube roughcast; sintering the resonance tube roughcast in a protective atmosphere, to form a resonance tube semi-finished product; and electroplating the resonance tube semi-finished product, to form the resonance tube. In the method, the resonance tube, and the filter according to embodiments of the present invention, the resonance tube is manufactured by using multiple powder materials.
Abstract:
An implantable electrode and method for manufacturing the electrode wherein the electrode has a strong, adherent surface inert coating on a conductive coating on the electrode surface, which demonstrates an increase in surface area of at least five times when compared to smooth platinum of the same geometry. An iridium oxide coating may be formed on a platinum coating by a physical deposition process, such as sputtering. The process of electroplating the iridium oxide surface coating is accomplished by voltage control processes. A gradient coating of iridium oxide ranging in composition from essentially pure platinum to essentially pure iridium oxide is produced by sputtering.
Abstract:
A method of manufacturing (AgxCu1-x)2ZnSn(SySe1-y)4 thin films, the method comprising: providing a thin film comprising Ag and/or Cu, the thin film further comprising Zn and annealing the thin film in an atmosphere comprising S and/or Se, and further comprising Sn.
Abstract:
A non-deleterious method for producing a continuous conductive circuit upon a non-conductive substrate can begin with the application of a metallic base layer upon a surface of a non-conductive substrate. A circuit pattern can be created within the metallic base layer based upon a circuit design. The metallic base layer comprising the circuit pattern can be physically separated from the remainder of the metallic base layer on the non-conductive substrate. The region of the non-conductive substrate surface that encloses the circuit pattern can be called the plating region. The remainder of the non-conductive substrate surface can be called the non-plating region. A first metal layer can be added upon the metallic base layer. A second metal layer can be added upon the first metal layer of the plating region. The second metal layer can be electrically conductive and restricted from forming on the first metal layer of the non-plating region.
Abstract:
A method for forming a contact region for a solar cell is disclosed. The method includes depositing a paste composed of a first metal above a substrate of the solar cell, curing the paste to form a first metal layer, electrolessly plating a second metal layer on the first metal layer and electrolytically plating a third metal layer on the second metal layer, where the second metal layer electrically couples the first metal layer to the third metal layer. The method can further include electrolytically plating a fourth metal layer on the third metal layer.
Abstract:
Some embodiments of the invention are directed to the electrochemical fabrication of microprobes which are formed from a core material and a material that partially coats the surface of the probe. Other embodiments are directed to the electrochemical fabrication of microprobes which are formed from a core material and a material that completely coats the surface of each layer from which the probe is formed including interlayer regions. These first two groups of embodiments incorporate both the core material and the coating material during the formation of each layer. Still other embodiments are directed to the electrochemical fabrication of microprobe arrays that are partially encapsulated by a dielectric material during a post layer formation coating process. In even further embodiments, the electrochemical fabrication of microprobes from two or more materials may occur by incorporating a coating material around each layer of the structure without locating the coating material in inter-layer regions.
Abstract:
There is provided a metal laminated structure comprising a first metal layer, a second metal layer and a third metal layer, the first metal layer being disposed on one surface of the second metal layer, the third metal layer being disposed on the other surface of the second metal layer, the first metal layer including at least one of tungsten and molybdenum, the second metal layer including copper, the third metal layer including at least one of tungsten and molybdenum, and a method for producing the metal laminated structure.