Abstract:
Abstract of DisclosureA process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, and acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft copolymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbant polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
The retainer of the present invention is made of a composite material having a body made from a polymer, a layer of solid lubricant formed over the body by chemically coating the body with a porous layer of solid lubricant and impregnating the solid lubricant with another lubricant using conventional methods such as vacuum impregnation. The retainer is placed between an outer raceway and an inner raceway to form a self-lubricating bearing. The bearing made in this manner has high lubrication tolerance (i.e. it performs well in the absence of external lubrication). Because of its high lubrication tolerance, the bearing is suitable for use in various applications such as dental/medical hand pieces that are periodically sterilized and other applications which occasionally experience periods of lubrication starvation.
Abstract:
A heat conductive silicone composition comprising (A) an alkenyl group-bearing organopolysiloxane, (B) an organohydrogenpolysiloxane having at least two SinullH groups, (C) a filler consisting of aluminum powder and zinc oxide powder in a weight ratio of from 1/1 to 10/1, (D) an organosilane having a long-chain alkyl groups, (E) platinum or a platinum compound, and (F) a regulator has a high thermal conductivity and maintains flexibility even when exposed to heat for an extended period of time.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer a with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A low friction cam shaft for actuating at least one valve of an internal combustion engine includes a shaft member extending longitudinally, at least one cam secured to the shaft member, the cam being made of a plurality of density metal materials and having an outer surface impregnated with a solid film lubricant that has an affinity for oil and promotes rapid formation of a stable oil film to reduce friction therebetween.
Abstract:
A resin composition for a sliding part comprising 5 to 45% by volume of a carbon fiber, 1 to 25 by volume of a metal powder and a remaining amount of a melt-processable fluorine-containing resin. A molded article made of the composition has a low friction coefficient having a narrow fluctuation range and has an excellent abrasion resistance to a soft metal.
Abstract:
A solid film lubricant system for protecting metal wear interfaces subject to high temperatures and wet lubrications, comprising an oil-attracting solid lubricant mixture with at least two elements selected from the group of graphite, MoS.sub.2 and BN; a support (i.e., hard lands or hard sublayer) for the mixture to loads of at least 10 psi at temperatures of 600.degree.-800.degree. F. while being thermally stable; a thermally stable thermoset polymer matrix adhering the mixture to the support or the wear surface, the polymer having inherent hydrocarbon chemical attraction to form a tenacious oil film of the lubricating oil on the wearing surface. A method of making anti-friction coated surfaces comprising providing a light metal based cylinder surface (i.e., metal base or alloys of aluminum, titanium, or magnesium); exposing nonoxidized metal of the surface; applying a high elastic modulus load-supporting metal layer onto at least portions of the light metal cylinder surface; and simultaneously distributing a solvent-based solid film lubricant mixture and thermoset polymer onto at least portions of the layer at about room temperature to form a coating of desired thickness. An engine block with one or more anti-friction coated cylinder bore surfaces, comprising a hard, load-supporting face on the bore surface; and a coating on the face comprised of an oil-attracting solid lubricant mixture and a thermoset polymer that supports loads of at least 10 psi at temperatures of 600.degree.-800.degree. F. and is stable at such temperatures.
Abstract:
A novel lubrication blend useful per se as a lubricant or as an additive to form a novel lubricant composition. The lubrication blend consists essentially of a mixture of: (1) at least one complex sulfide of antimony, represented by the formula:Sb.sub.x S.sub.ywherein, x is a number in the range from about 1.7 to about 2.3, and y is a number in the range from about 3.6 to about 4.4, (2) at least one antimony oxide, and (3) at least one lamellar crystalline solid lubricant.
Abstract:
A lubricant film which prevents galling or sliding metal surfaces comprising: a solid lubricant comprising 60-80% wt % of MoS.sub.2 or MoS.sub.2 +graphite; a lubricant additive comprising at least one component which comprises 10-30% wt % of Sb.sub.2 O.sub.3, Fe powder Zn powder or Ag powder; and an organic binder comprising 3-15% by weight of at least one component selected from the group consisting of epoxy ester resin, acrylic resin and urea resin.
Abstract translation:一种防止金属表面磨损或滑动的润滑剂膜,包括:包含60-80重量%的MoS 2或MoS 2 +石墨的固体润滑剂; 包含至少一种包含10-30重量%的Sb 2 O 3,Fe粉末Zn粉末或Ag粉末的组分的润滑剂添加剂; 和包含3-15重量%的至少一种选自环氧酯树脂,丙烯酸树脂和尿素树脂的组分的有机粘合剂。