Abstract:
Some embodiments include memory devices having a wordline, a bitline, a memory element selectively configurable in one of three or more different resistive states, and a diode configured to allow a current to flow from the wordline through the memory element to the bitline responsive to a voltage being applied across the wordline and the bitline and to decrease the current if the voltage is increased or decreased. Some embodiments include memory devices having a wordline, a bitline, memory element selectively configurable in one of two or more different resistive states, a first diode configured to inhibit a first current from flowing from the bitline to the wordline responsive to a first voltage, and a second diode comprising a dielectric material and configured to allow a second current to flow from the wordline to the bitline responsive to a second voltage.
Abstract:
Memory devices are shown that include a body region and a connecting region that is formed from a semiconductor with a lower band gap than the body region. Connecting region configurations can provide increased gate induced drain leakage during an erase operation. Configurations shown can provide a reliable bias to a body region for memory operations such as erasing, and containment of charge in the body region during a boost operation.
Abstract:
Some embodiments include vertical stacks of memory units, with individual memory units each having a memory element, a wordline, a bitline and at least one diode. The memory units may correspond to cross-point memory, and the diodes may correspond to band-gap engineered diodes containing two or more dielectric layers sandwiched between metal layers. Tunneling properties of the dielectric materials and carrier injection properties of the metals may be tailored to engineer desired properties into the diodes. The diodes may be placed between the bitlines and the memory elements, or may be placed between the wordlines and memory elements. Some embodiments include methods of forming cross-point memory arrays. The memory arrays may contain vertical stacks of memory unit cells, with individual unit cells containing cross-point memory and at least one diode.
Abstract:
Some embodiments include a transistor having a drain region and a source region. A conductive gate is between the source and drain regions. First channel material is between the gate and the source region. The first channel material is spaced from the gate by one or more insulative materials. Second channel material is between the first channel material and the source region, and directly contacts the source region. The first and second channel materials are transition metal chalcogenide. One of the source and drain regions is a hole reservoir region and the other is an electron reservoir region. Tunnel dielectric material may be between the first and second channel materials.
Abstract:
A vertical ferroelectric field effect transistor construction comprises an isolating core. A transition metal dichalcogenide material encircles the isolating core and has a lateral wall thickness of 1 monolayer to 7 monolayers. A ferroelectric gate dielectric material encircles the transition metal dichalcogenide material. Conductive gate material encircles the ferroelectric gate dielectric material. The transition metal dichalcogenide material extends elevationally inward and elevationally outward of the conductive gate material. A conductive contact is directly against a lateral outer sidewall of the transition metal dichalcogenide material that is a) elevationally inward of the conductive gate material, or b) elevationally outward of the conductive gate material. Additional embodiments are disclosed.
Abstract:
Some embodiments include a transistor having a drain region and a source region. A conductive gate is between the source and drain regions. First channel material is between the gate and the source region. The first channel material is spaced from the gate by one or more insulative materials. Second channel material is between the first channel material and the source region, and directly contacts the source region. The first and second channel materials are transition metal chalcogenide. One of the source and drain regions is a hole reservoir region and the other is an electron reservoir region. Tunnel dielectric material may be between the first and second channel materials.
Abstract:
In some embodiments, a transistor includes a stack having a bottom source/drain region, a first insulative material, a conductive gate, a second insulative material, and a top source/drain region. The stack has a vertical sidewall with a bottom portion along the bottom source/drain region, a middle portion along the conductive gate, and a top portion along the top source/drain region. Third insulative material is along the middle portion of the vertical sidewall. A channel region material is along the third insulative material. The channel region material is directly against the top and bottom portions of the vertical sidewall. The channel region material has a thickness within a range of from greater than about 3 Å to less than or equal to about 10 Å; and/or has a thickness of from 1 monolayer to 7 monolayers.
Abstract:
Devices for providing transistors with improved operating characteristics are provided. In one example, a system includes a processor and a memory device. A transistor of the processor or the memory device includes a channel in a semiconductor substrate that is undoped or intrinsic. A metal gate is disposed directly on top of the channel, and the bandgap of the semiconductor substrate and the work function of the metal form a Schottky barrier.
Abstract:
Some embodiments include selectively conducting devices having a first electrode, a second electrode, and dielectric material between the first and second electrodes. The dielectric material may be configured to conduct current from the first electrode to the second electrode when a first voltage is applied across the first electrode and the second electrode. Furthermore, the dielectric material may be configured to inhibit current from flowing from the second electrode to the first electrode when a second voltage having a polarity opposite that of a polarity of the first voltage is applied across the first electrode and the second electrode. The diode material may comprise a plurality of layers of different dielectric materials arranged in order of increasing barrier height. Quantum wells may form at junctions of layers of the plurality responsive to the first voltage. Some embodiments include diode forming methods.
Abstract:
A field effect transistor construction comprises two source/drain regions and a channel region there-between. The channel region comprises a transition metal dichalcogenide material having a thickness of 1 monolayer to 7 monolayers and having a physical length between the source/drain regions. A mid-gate is operatively proximate a mid-portion of the channel region relative to the physical length. A pair of gates is operatively proximate different respective portions of the channel region from the portion of the channel region that the mid-gate is proximate. The pair of gates are spaced and electrically isolated from the mid-gate on opposite sides of the mid-gate. Gate dielectric is between a) the channel region, and b) the mid-gate and the pair of gates. Additional embodiments are disclosed.