Abstract:
A submember for electrical device is disclosed. Said submember is mounted on a chip of electrical device. An embodiment for the submember comprised of an insulator and a plurality of conductive elements, wherein the conductive elements embedded in the insulator and a portion of conductive element exposed to the insulator for electrical connection, then (i). the reliability of submember is enhanced; (ii).the material of insulator enables to be saved; and (iii).the thickness of submember is thinner and the heat dissipation of chip enhanced; moreover, a portion of the conductive element may be protruding the insulator for avoiding a short-circuited problem of conductive wire, moreover, the conductive element may be staircase-shaped, then, not only the reliability of submember is enhanced, but the short circuit problem of conductive wire is also avoided; the conductive element may further include an extending portion, furthermore, the conductive element may be placed in a cavity as required.
Abstract:
A PLL includes a loop filter for accumulating charge to generate a loop-filter voltage and a VCO having a plurality of frequency ranges. The VCO receives the loop-filter voltage and generates an output signal having a frequency according to the loop-filter voltage and a currently selected VCO frequency range. During PLL calibration, the loop-filter is connected to a constant voltage source; the PLL feedback signal is synchronized with the reference signal; a linear search, a binary search, or a memory lookup is used to find a first and a second VCO frequency range; first and second time durations are measured for the time durations between the second rising edges of the reference signal and the PLL feedback signal for the two VCO frequency ranges, and the optimal VCO frequency range is determined by setting the VCO frequency range to be the VCO frequency range having the shortest measured time duration.
Abstract:
Substrate for electrical devices and methods of manufacturing such substrate are disclosed. An embodiment for the substrate comprised of an insulator and a plurality of conductive elements, wherein the insulator having a recess. The conductive elements embedded in the insulator. The conductive elements extend from the insulator surface to the recess. There are two portions of the conductive elements for electrical connection respectively, wherein a portion of conductive element may protrude the insulator surface for electrical connection. In this manner, solder balls are not needed. Moreover, the substrate of the present invention may also comprise an adhesive mean, which is between the conductive elements and the insulator. In addition, the substrate may further comprise a submember such as a chip, heat spreader etc., and the present invention may be capable of affording a thinner electrical device thickness, enhanced reliability, and a decreased cost in production.
Abstract:
A urinary catheter conveying device includes a sleeve member, a conveying assembly and a controller. The sleeve member is for sleeving onto a glans of a penis and has a guiding hole to be registered with an external urethral orifice of the glans. The conveying assembly includes a casing removably mounted to the sleeve member, and a conveying mechanism for advancing the urinary catheter to the guiding hole such that the urinary catheter is inserted into the external urethral orifice. The controller controls the conveying mechanism to advance the urinary catheter to the guiding hole. A urinary catheterization system and a method of using the urinary catheterization system are also disclosed.
Abstract:
A method for pre-treating a wafer surface before applying a material thereon. The method includes positioning the wafer on a rotating apparatus. The wafer is rotated at a first rotational speed between about 50 revolutions per minute (rpm) and about 300 rpm and for a period of about 1 second to about 10 seconds while dispensing a cleaning solvent on the wafer surface. The wafer is rotated at a second rotational speed between about 500 rpm and about 1,500 rpm for a period of about 1 second to about 10 seconds. The wafer is then rotated at a third rotational speed between about 50 rpm and about 300 rpm for a period of about 1 second to about 5 seconds. With the wafer rotating at the third rotational speed, a solvent-containing material is thereafter deposited on the surface of the wafer.
Abstract:
Substrate for electrical devices is disclosed. An embodiment for the substrate comprised of an insulator, a conductive element(s) and a conductive material(s), wherein the conductive element embedded in the insulator, and two surfaces of the conductive element exposed to two surfaces of the insulator for electrical connection respectively, wherein the upper surface of conductive element is below the upper surface of insulator and is plated by the conductive material, meanwhile the conductive element include a protruding portion which is protruded the insulator, in this manner, solder balls are not needed, moreover the conductive element can further include an extending portion; the present invention may be capable of affording a thinner electrical device thickness and enhanced reliability.
Abstract:
A method for automatic frequency tuning in a phase lock loop suitable for use in multi-band VCO wireless systems having very limited initial frequency lock times is disclosed. A predetermined subset of VCOs out of a larger bank of VCOs is selected to serve as interpolation points. The interpolation point VCOs are pre-calibrated with a predetermined voltage and the resultingly generated frequency for each of the interpolation point VCOs is stored into memory as a (frequency, VCO) pair, one pair for each interpolation point VCO. When a desired frequency then is given to the system, an appropriate VCO is selected by interpolation using the (frequency, VCO) pairs of the two most adjacent interpolation points for tracking and locking.
Abstract:
A PLL includes a loop filter for accumulating charge to generate a loop-filter voltage and a VCO having a plurality of frequency ranges. The VCO receives the loop-filter voltage and generates an output signal having a frequency according to the loop-filter voltage and a currently selected VCO frequency range. During PLL calibration, the loop-filter is connected to a constant voltage source; the PLL feedback signal is synchronized with the reference signal; a linear search, a binary search, or a memory lookup is used to find a first and a second VCO frequency range; first and second time durations are measured for the time durations between the second rising edges of the reference signal and the PLL feedback signal for the two VCO frequency ranges, and the optimal VCO frequency range is determined by setting the VCO frequency range to be the VCO frequency range having the shortest measured time duration.
Abstract:
A method and device for frequency synthesizing, in which the digital frequency synthesizer includes a clock pair having two similar ring-oscillators to separately generate a search frequency and an output frequency, a frequency tracking unit, and a clock controlling unit. The frequency-search method includes two stages: one stage is the coarse search stage based on the "Prune-and-Search", and other stage is the fine search stage based on the "fixed-step" algorithm. In order to determine which search scheme is used to search the target frequency and to determine the lock status, two cost functions for search and lock-in are derived. These two cost functions define the search threshold and the lock threshold, and these thresholds define the cost window and the lock window. If the frequency error is higher than both the search and lock thresholds, a coarse search is activated to estimate the correct frequency. And only when the frequency error falls between the search and the lock thresholds, should the fine search be activated. By properly assigning these two thresholds, the search performance, such as tinting and frequency error, and the output resolution can be improved. The digital frequency synthesizer which can be designed at HDL level and synthesized as part of a target cell library.
Abstract:
An electric current compensation circuit for use with a multiple-phase burshless motor to reduce ripples in the output torque is disclosed. It contains a plurality of electric current compensation loops each for a respective phase winding and each of the electric compensation loops contains: (a) a first input for receiving a line current from the driver; (b) a second input for receiving the compensation current from the motor sensor; (c) a forward rectifying circuit for forwardly rectifying the line current and the compensation current; (d) a reverse rectifying circuit for reversely rectifying the line current and the compensation current; and (e) a summation circuit for summing the forwardly rectified compensation current and the reversely rectified compensation current and outputting a synthetic current to a phase winding of the motor. Each time the phase is changed, the electric current compensation circuit is triggered causing the synthetic current to be sent to the motor to allow the motor to generate an output torque with reduced ripple.