Abstract:
The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
Abstract:
A leak resistant electrical connector configured as a fluidic barrier between a fluidics device, which may comprise a chemFET sensor, and other electrical circuitry wherein the fluidics device further comprises one or more electrical contacts conductively coupled to one or more electrical contacts associated with the electrical circuitry through the connector.
Abstract:
A system including a communication interface to communicatively couple to a sensor cartridge, a fluidic subsystem to exchange a reagent solution with the sensor cartridge, and a computational circuitry communicatively coupled to the communication interface and the fluidic subsystem. The computation circuitry is to monitor a sensor signal of a sensor of the sensor cartridge, detect a leak based on the sensor signal, and control fluid flow of the fluidic subsystem in response to detecting.
Abstract:
The present invention provides novel microfluidic substrates and methods that are useful for performing biological, chemical and diagnostic assays. The substrates can include a plurality of electrically addressable, channel bearing fluidic modules integrally arranged such that a continuous channel is provided for flow of immiscible fluids.
Abstract:
The sensor arrangement, performance-monitored machine system, and method, utilize radiance of exhaust streams to indicate performance deviation, due to combustion instability or machine malfunction, in propulsion gas turbine engines, augmentors used on such engines, stationary power generating gas turbine engines, and other air-breathing combustion-based turbine machines and systems. Sensor operation is based upon high-speed measurements of radiant emission from the hot exhaust stream, taken at a minimum rate of 2000, and preferably at a rate of at least 8000, samples per second. Select infrared wavelengths of light are used to capture temporal variations in the radiance, which are Fourier analyzed to determine the magnitude and frequency of the combustion instability. The apparatus and method enable detection of incipient combustion instability, combustion system health, power loss, stall, surge, and fuel light-off; information and feedback are available for combustion control, to provide an early warning and diagnosis of a physical and/or mechanical malfunction, and to indicate a need for condition-based maintenance.
Abstract:
Methods and apparatus relating to FET arrays including large FET arrays for monitoring chemical and/or biological reactions such as nucleic acid sequencing-by-synthesis reactions. Some methods provided herein relate to improving signal (and also signal to noise ratio) from released hydrogen ions during nucleic acid sequencing reactions.
Abstract:
A method and apparatus for measuring radiometric signals. An infrared energy signal is directed through a sample and combined with a selected signal to reduce the effect of analog-to-digital converter nonlinearity. The combined signal is processed to, for example, accurately and repeatably identify the types of and concentration of molecules within the sample.
Abstract:
A leak resistant electrical connector configured as a fluidic barrier between a fluidics device, which may comprise a chemFET sensor, and other electrical circuitry wherein the fluidics device further comprises one or more electrical contacts conductively coupled to one or more electrical contacts associated with the electrical circuitry through the connector.
Abstract:
The present invention provides novel microfluidic devices and methods that are useful for performing high-throughput screening assays and combinatorial chemistry. Such methods can include labeling a library of compounds by emulsifying aqueous solutions of the compounds and aqueous solutions of unique liquid labels on a microfluidic device, which includes a plurality of electrically addressable, channel bearing fluidic modules integrally arranged on a microfabricated substrate such that a continuous channel is provided for flow of immiscible fluids, whereby each compound is labeled with a unique liquid label, pooling the labeled emulsions, coalescing the labeled emulsions with emulsions containing a specific cell or enzyme, thereby forming a nanoreactor, screening the nanoreactors for a desirable reaction between the contents of the nanoreactor, and decoding the liquid label, thereby identifying a single compound from a library of compounds.
Abstract:
A method and apparatus is disclosed for signal spectrometry using an improved apodization function. Such method and apparatus involve (i) obtaining sample and reference time domain waveforms; (ii) applying sample and reference apodization waveforms to the sample and reference time domain waveforms, such that substantially same weight is applied to corresponding substantially coextensive regions of the sample and reference time domain waveforms, (iii) transforming the sample and reference apodized waveforms from the time domain into the frequency domain; and (iv) generating referenced spectral analysis waveform for signal analysis from a ratio of the transformed sample and reference frequency spectra, the spectral analysis waveform substantially excluding frequencies associated with the corresponding substantially coextensive regions of the apodized sample and reference time domain waveforms.