摘要:
A method of etching a semiconductor device having multi-layered wiring by an ion beam is disclosed which method comprises the steps of: extracting a high-intensity ion beam from a high-density ion source; focusing the extracted ion beam; causing the focused ion beam to perform a scanning operation by a voltage applied to a deflection electrode; forming a first hole in the semiconductor device by the focused ion beam to a depth capable of reaching an insulating film formed between upper and lower wiring conductors so that the first hole has a curved bottom corresponding to the undulation of the upper wiring conductor, and the upper wiring conductor is absent at the bottom of the first hole; and scanning a portion of the bottom of the first hole with the focused ion beam to form a second hole in the insulating film to a depth capable of reaching the lower wiring conductor, thereby preventing the shorting between the upper and lower wiring conductors. Further, a method of forming a hole of a predetermined shape at a surface area having a step-like portion of a semiconductor device by an ion beam is disclosed which method comprises a pre-etching step of scanning the high-level region of the step-like portion with the ion beam so that the high-level region becomes equal in level to the low-level region of the step-like portion, and a main step of scanning the whole of the surface area with the ion beam till the hole of the predetermined shape is formed in the semiconductor device.
摘要:
A probe driving method and a probe apparatus for bringing a probe into contact with the surface of a sample in a safe and efficient manner by monitoring the probe height. Information about the height of the probe from the sample surface is obtained by detecting a probe shadow (54) appearing immediately before the probe contacts the sample, or based on a change in relative positions of a probe image and a sample image that are formed as an ion beam is irradiated diagonally.
摘要:
Herein disclosed are a variety of techniques relating to the wiring and logic corrections on a chip by making use of the focused ion beam (which is shortly referred to as “FIB”) or the laser selection metal CVD. The time periods for the wiring corrections and for debugging and developing an electronic system are shortened by making use of the processing characteristics of the FIB. Illustratively, a hole is bored in an insulating film above a portion of a wiring which is to be connected to another wiring by means of a focused ion beam. The inside of the hole and a predetermined region on the insulating film are irradiated with either a laser beam or an ion beam in a metal compound gas to deposit metal in the hole and on said region and a connecting wiring is formed by means of optically pumped CVD. The present invention also relates to an IC or VLSI structure having a trial cutting region, at test etching region and an auxiliary wiring or pad, suitable for the application of such defect correction and circuit change, as well as a method of making same, a designing method using such technique, and a focused ion beam system and other systems for use in those methods.
摘要:
A method of processing a sample using a charged beam and reactive gases and a system employing the same, the method and system being able to perform the reactive etching and the beam assisted deposition using a charged particle detector free from the degradation of the performance due to the reactive gas. The system is designed in such a way that a shutter mechanism is provided in the form of the charged particle detector, and a chamber for accommodating the charged particle detector can be evacuated. In the observation of the sample, the charged particle detector is turned on to open the shutter mechanism, and in the processing of the sample, the charged particle detector is turned off or left as it is to shut the shutter mechanism to evacuate the inside of the charged particle detector.
摘要:
The present invention relates to a method and apparatus for correcting defects of an X-ray mask which includes a focused ion beam used to irradiate at least a region having a defective portion of an X-ray mask having a protective film and eliminating the protective film; exposing a circuit pattern having a defective portion located under the region or setting this circuit pattern to the state near the exposure; detecting one of the secondary electrons, secondary ions, reflected electrons, or absorbing current generated from that region and detecting a true defective position. Then positioning the focused ion beam to the true defective position and irradiating the focused ion beam to the defective portion thereby correcting the defect.
摘要:
A IC wiring connecting method for interconnecting conductive lines of the same wiring plane of an IC chip for correcting the wiring, for interconnecting conductive lines of different wiring lanes of a multilayer IC chip at the same position, or for connecting a conductive line of a lower wiring plane of a multilayer IC chip to a conductive line formed at a separate position on the same multilayer IC chip. The insulating film or films covering conductive lines to be interconnected are processed by an energy beam such as a concentrated ion beam to form holes so as to expose the respective parts of the conductive lines where the conductive lines are to be interconnected, then a metal is deposited over the surfaces of the holes and an area interconnecting the holes by irradiating the surfaces of the holes and the area by an energy beam or a concentrated ion beam in an atmosphere of a gaseous organic metal compound to form a conductive metal film electrically interconnecting the conductive lines. Also provided is an apparatus for carrying out the IC wiring connecting method, which comprises, as essential components, an ion beam material processing system, an insulating film forming system such as a laser induced CVD unit, a conductive film forming system, and an insulating film etching system.
摘要:
Disclosed is an ion beam processing apparatus comprising within a vacuum container a specimen chamber with a table for mounting a specimen provided therein, a high intensity ion source, such as a liquid metal ion source or an electric field ionizing ion source which operates in ultra-low temperature, confronting the specimen chamber, an extraction electrode for extracting an ion beam out of the ion source, a charged-particle optical system for focusing the ion beam to a spot, and an aperture for adjusting the spot diameter.
摘要:
An apparatus according to the present invention for irradiating a specimen with charged particle beams comprises a single charged particle generating source from which the charged particle beams formed of electrons and negative ions, respectively, can be simultaneously derived; a specimen holder on which the specimen is placed; and charged particle irradiation means which is interposed between the charged particle generating source and the specimen holder in order to focus the charged particle beams and to irradiate the surface of the specimen with the focused beams, and which includes at least one magnetic lens and at least one electrostatic lens that are individually disposed.
摘要:
A failure analysis apparatus 10 is composed of an inspection information acquirer 11 for acquiring a failure observed image P2 of a semiconductor device, a layout information acquirer 12 for acquiring layout information, and a failure analyzer 13 for analyzing a failure. The failure analyzer 13 extracts as a candidate interconnection for a failure, an interconnection passing an analysis region, out of a plurality of interconnections, using interconnection information to describe a configuration of interconnections in the semiconductor device by a pattern data group of interconnection patterns in respective layers, and, for extracting the candidate interconnection, it performs an equipotential trace of the interconnection patterns using the pattern data group, thereby extracting the candidate interconnection. This substantializes a semiconductor failure analysis apparatus, failure analysis method, and failure analysis program capable of securely and efficiently performing the analysis of the failure of the semiconductor device using the failure observed image.
摘要:
A secondary charged particle image acquisition method and its apparatus for detecting a secondary charged particle image. The method includes the steps of irradiating a surface of a specimen with a focused charged particle beam and detecting a secondary charged particle emanated from the surface of the specimen, obtaining a secondary charged particle image based on the detected secondary charged particle, irradiating a positive ion beam on the surface of the specimen where the focused charged particle beam is irradiated and inducing a conductive layer on the surface of the specimen by the irradiation of the positive ion beam and diffusing an electric charge on the surface of the conductive layer.