Abstract:
An embodiment of the invention provides a chip package which includes: a semiconductor substrate having a first surface and a second surface; a first recess extending from the first surface towards the second surface; a second recess extending from a bottom of the first recess towards the second surface, wherein a sidewall and the bottom of the first recess and a second sidewall and a second bottom of the second recess together form an exterior side surface of the semiconductor substrate; a wire layer disposed over the first surface and extending into the first recess and/or the second recess; an insulating layer positioned between the wire layer and the semiconductor substrate; and a metal light shielding layer disposed over the first surface and having at least one hole, wherein a shape of the at least one hole is a quadrangle.
Abstract:
An embodiment of the invention provides a chip package which includes: a first substrate; a second substrate disposed thereon, wherein the second substrate includes a lower semiconductor layer, an upper semiconductor layer, and an insulating layer therebetween, and a portion of the lower semiconductor layer electrically contacts with at least one pad on the first substrate; a conducting layer disposed on the upper semiconductor layer of the second substrate and electrically connected to the portion of the lower semiconductor layer electrically contacting with the at least one pad; an opening extending from the upper semiconductor layer towards the lower semiconductor layer and extending into the lower semiconductor layer; and a protection layer disposed on the upper semiconductor layer and the conducting layer, wherein the protection layer extends onto a portion of a sidewall of the opening, and does not cover the lower semiconductor layer in the opening.
Abstract:
An embodiment of the present invention provides a manufacturing method of a chip package structure including: providing a first substrate having a plurality of predetermined scribe lines defined thereon, wherein the predetermined scribe lines define a plurality of device regions; bonding a second substrate to the first substrate, wherein a spacing layer is disposed therebetween and has a plurality of chip support rings located in the device regions respectively and a cutting support structure located on peripheries of the chip support rings, and the spacing layer has a gap pattern separating the cutting support structure from the chip support rings; and cutting the first substrate and the second substrate to form a plurality of chip packages. Another embodiment of the present invention provides a chip package structure.
Abstract:
A chip package includes a chip, a sidewall structure that has a first light-shielding layer, a second light-shielding layer, and a cover. The chip has a light emitter and a light receiver that are located on a top surface of the chip. The sidewall structure is located on the top surface of the chip and has two aperture areas. The light emitter and the light receiver are respectively located in the two aperture areas. The sidewall structure surrounds the light emitter and the light receiver, and at least one surface of the sidewall structure has the first light-shielding layer. The second light-shielding layer is located between the chip and the sidewall structure. The cover is located on a surface of the sidewall structure facing away from the chip, and at least covers the light receiver and the sidewall structure that surrounds the light receiver.
Abstract:
A chip package including a substrate that has a first surface and a second surface opposite thereto is provided. The substrate includes a chip region and a scribe line region that extends along the edge of the chip region. The chip package further includes a dielectric layer disposed on the first surface of the substrate. The dielectric layer corresponding to the scribe line region has a through groove that extends along the extending direction of the scribe line region. A method of forming the chip package is also provided.
Abstract:
This invention provides a touch panel-sensing chip package module complex, comprising: a touch panel with a first top surface and a first bottom surface opposite to each other, wherein the first bottom surface having a first cavity with a bottom wall surrounded by a sidewall; a color layer formed on the bottom wall and the first bottom surface adjacent to the cavity; and a chip scale sensing chip package module bonded to the cavity by the color layer formed on the bottom wall of the cavity.
Abstract:
A wafer coating system includes a wafer chuck, a flowing insulating material sprayer and a wafer tilting lifting pin. The wafer chuck has a carrier part and a rotating part, which the carrier part is mounted on the rotating part to carry a wafer, and the rotating part is configured to rotate with a predetermined axis. The flowing insulating material sprayer is above the wafer chuck and configured to spray a flowing insulating material to the wafer, and the wafer tilting lifting pin is configured to form a first acute angle between the wafer and direction of gravity.
Abstract:
A manufacturing method of a semiconductor structure includes the following steps. A patterned photoresist layer is formed on a wafer of the wafer structure. The wafer is etched, such that channels are formed in the wafer, and a protection layer of the wafer structure is exposed through the channels. The protection layer is etched, such that openings aligned with the channels are formed in the protection layer. Landing pads in the protection layer are respectively exposed through the openings and the channels, and the caliber of each of the openings is gradually increased toward the corresponding channel. Side surfaces of the wafer surrounding the channels are etched, such that the channels are expanded to respectively form hollow regions. The caliber of the hollow region is gradually decreased toward the opening, and the caliber of the opening is smaller than that of the hollow region.
Abstract:
A semiconductor structure includes a silicon substrate, a protection layer, an electrical pad, an isolation layer, a redistribution layer, a conductive layer, a passivation layer, and a conductive structure. The silicon substrate has a concave region, a step structure, a tooth structure, a first surface, and a second surface opposite to the first surface. The step structure and the tooth structure surround the concave region. The step structure has a first oblique surface, a third surface, and a second oblique surface facing the concave region and connected in sequence. The protection layer is located on the first surface of the silicon substrate. The electrical pad is located in the protection layer and exposed through the concave region. The isolation layer is located on the first and second oblique surfaces, the second and third surfaces of the step structure, and the tooth structure.
Abstract:
A manufacturing method of a semiconductor structure includes the following steps. A patterned photoresist layer is formed on a wafer of the wafer structure. The wafer is etched, such that channels are formed in the wafer, and a protection layer of the wafer structure is exposed through the channels. The protection layer is etched, such that openings aligned with the channels are formed in the protection layer. Landing pads in the protection layer are respectively exposed through the openings and the channels, and the caliber of each of the openings is gradually increased toward the corresponding channel. Side surfaces of the wafer surrounding the channels are etched, such that the channels are expanded to respectively form hollow regions. The caliber of the hollow region is gradually decreased toward the opening, and the caliber of the opening is smaller than that of the hollow region.