Abstract:
A method for protecting a material of a microstructure comprising the material and a noble metal layer against undesired galvanic etching during manufacture, the method comprises forming on the structure a sacrificial metal layer having a lower redox potential than the material, the sacrificial metal layer being electrically connected to the noble metal layer.
Abstract:
A liquid-based gravity-driven etching-stop technique for controlling structure dimension is provided, where opposite etching trenches in cooperation with an etching-stop solution are used for controlling the dimension of a microstructure on the wafer level. In an embodiment, opposite trenches surrounding the microstructure are respectively etched on sides of the wafer, and the trench depth on the side of the wafer, on which the microstructure is, is equal to the design dimension of the microstructure. Contrarily, it is unnecessary to define the trench depth on the back-side of the chip. In the final step of the fabrication process, when the device is etched, such that the trenches on the sides communicate with each other to separate the microstructure from the whole wafer automatically and thereby shift from the etchant into the etching-stop solution to stop etching.
Abstract:
A method for protecting a material of a microstructure comprising said material and a noble metal layer (8) against undesired galvanic etching during manufacture comprises forming on the structure a sacrificial metal layer (12) having a lower redox potential than said material, the sacrificial metal layer (12) being electrically connected to said noble metal layer (8).
Abstract:
The forming of superhard, durable and inert mechanical microstructures, such as tips for atomic force microscopy and field emission, membranes, hinges, actuators, and sensors requires micromachining of silicon or polysilicon. The microstructures are then reacted with a hydrocarbon or ammonia gas, at a temperature in the range of 700.degree. C. to 1100.degree. C. and in partial vacuum conditions for several minutes. Gases such as methane, ethane, or acetylene will convert the surface layers to SiC, which is useful for its conductive properties, while ammonia gas will convert the surface layers to Si.sub.3 N.sub.4, which is useful for its insulative properties. Thus, the converted material will have improved physical, mechanical, chemical and electrical properties.
Abstract:
Flexible, insertable, transparent microelectrode arrays that allow integration of electrophysiological recordings with any optical imaging or stimulation technology are disclosed. In some embodiments of the disclosed technology, a microelectrode array includes a flexible substrate layer including a shank member extending in a first direction and a tapered tip at an end of the shank member, and a plurality of electrode wires arranged in the first direction on the flexible substrate layer, wherein the plurality of electrode wires includes adjacent electrode wires having different lengths from each other such that an electrode wire arranged closer to a centerline of the flexible substrate layer is longer than an adjacent electrode arranged further away from the centerline of the flexible substrate.
Abstract:
A method of manufacturing a plurality of through-holes in a layer of first material by subjecting part of the layer of said first material to ion beam milling.For batch-wise production, the method comprises after a step of providing the layer of first material and before the step of ion beam milling, providing a second layer of a second material on the layer of first material, providing the second layer of the second material with a plurality of holes, the holes being provided at central locations of pits in the first layer, and subjecting the second layer of the second material to said step of ion beam milling at an angle using said second layer of the second material as a shadow mask.
Abstract:
The present invention relates to modular system for micro-nano manipulation of samples. The modular system of the present invention comprises changeable tool tips which may be provided in an array, and a tool body. Each changeable tool tip comprises an end effector connected to a base having mating structures. The tool body includes an arm having slits having dimensions and being disposed on the arm so as to detachably couple with the mating structures of the tool tip. The slits may include an opening with rounded corners for receiving the mating structures, and tapered side walls for frictionally fitting the mating structures. The present invention relates also to a connection system for connecting a micro-dimensional tool body to a changeable micro-dimensional tool tip and to a manipulation tool for use with changeable tool tips of the present invention.
Abstract:
Techniques for affixing a micro-object to a mounting structure at a desired relative orientation. A shaped portion of a work piece is caused to become embedded in two or more reference structures at stages during fabrication. The micro-object may have dimensions less than 200 microns, and possibly on the order of 15-25 microns. The mounting structure may be formed with a blind recess or a through aperture in which the micro-object is mounted.
Abstract:
In one embodiment, the present invention includes a method for forming a sacrificial oxide layer on a base layer of a microelectromechanical systems (MEMS) probe, patterning the sacrificial oxide layer to provide a first trench pattern having a substantially rectangular form and a second trench pattern having a substantially rectangular portion and a lateral portion extending from the substantially rectangular portion, and depositing a conductive layer on the patterned sacrificial oxide layer to fill the first and second trench patterns to form a support structure for the MEMS probe and a cantilever portion of the MEMS probe. Other embodiments are described and claimed.
Abstract:
The invention relates to a method for the fabrication of a membrane oriented in a (111) plane of a (100) silicon wafer. To this end the method comprises the following steps: applying a mask to both sides of the wafer, wherein portions of the sides are covered by the mask; and the at least partial removal by etching away silicon material from the portions of the two sides of the wafer that are not covered. This method is characterised in that the etching step substantially removes the silicon material forming recesses in the two surfaces of the wafer, such that the walls of the recesses are formed by (111) planes, and in that not covered portions at both sides of the wafer are aligned in relation to one another such that a (111) plane is formed and the distance d between said two planes is less than the thickness of the silicon wafer, so as to form a membrane in the (111) plane having a thickness d. Such a membrane has many application possibilities in the field of MEMS, for example by dividing the membrane into individual cantilevers.