Abstract:
A method of forming a semiconductor device that includes forming a plurality of semiconductor pillars. A dielectric spacer is formed between at least one set of adjacent semiconductor pillars. Semiconductor material is epitaxially formed on sidewalls of the adjacent semiconductor pillars, wherein the dielectric spacer obstructs a first portion of epitaxial semiconductor material formed on a first semiconductor pillar from merging with a second portion of epitaxial semiconductor material formed on a second semiconductor pillar.
Abstract:
A method includes forming a plurality of fins above a substrate, forming at least one dielectric material above and between the plurality of fins, and forming a mask layer above the dielectric material. The mask layer has an opening defined therein. At least one etching process is performed to remove a portion of the at least one dielectric material exposed by the opening so as to expose a top surface portion and sidewall surface portions of at least one fin in the plurality of fins. The at least one dielectric material remains above the substrate adjacent the at least one fin. An etching process is performed to remove the at least one fin.
Abstract:
Methods and interconnect structures for circuit structure transistors are provided. The methods include, for instance: providing one or more fins above a substrate, and an insulating material over the fin(s) and the substrate; providing barrier structures extending into the insulating material, the barrier structures being disposed along opposing sides of the fin(s); exposing a portion of the fin(s) and the barrier structures; and forming an interconnect structure extending over the fin(s), the barrier structures confining the interconnect structure to a defined dimension transverse to the fin(s). Exposing the portion of the fin(s) and barrier structures may include isotropically etching the insulating material with an etchant that selectively etches the insulating material without affecting a barrier material of the barrier structures.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a multi-layer patterned masking layer comprised of first and second layers of material and first and second openings that extend through both of the first and second layers of material, wherein the first opening is positioned above a first area of the substrate where the DDB isolation structure will be formed and the second opening is positioned above a second area of the substrate where the SDB isolation structure will be formed. The method also includes performing a first process operation through the first opening to form the DDB isolation structure, performing a second process operation to remove the second layer of material and to expose the first opening in the first layer of material, and performing a third process operation through the second opening to form the SDB isolation structure.
Abstract:
A method of filling trenches between gates includes forming a first and a second dummy gate over a substrate, the first and second dummy gates including a sacrificial gate material and a hard mask layer; forming a first gate spacer along a sidewall of the first dummy gate and a second gate spacer along a sidewall of the second dummy gate; performing an epitaxial growth process to form a source/drain on the substrate between the first and second dummy gates; disposing a conformal liner over the first and second dummy gates and the source/drain; disposing an oxide on the conformal liner between the first and second dummy gates; recessing the oxide to a level below the hard mask layers of the first and second dummy gates to form a recessed oxide; and depositing a spacer material over the recessed oxide between the first dummy gate and the second dummy gate.
Abstract:
Uniform fin recessing for the situation of recessing nonadjacent fins and the situation of recessing adjacent fins includes providing a starting semiconductor structure, the structure including a semiconductor substrate, multiple fins coupled to the substrate, each fin having a hard mask layer thereover and being surrounded by isolation material. The hard mask layer is then removed over some of the fins, at least partially removing the some of the raised structures, the at least partially removing creating openings, and filling the openings with an optical planarization layer (OPL) material.
Abstract:
A semiconductor device includes a source/drain region, a gate structure, a gate cap layer positioned above the gate structure and a sidewall spacer positioned adjacent to opposite sides of the gate structure. A first epi semiconductor material is positioned in the source/drain region, the first epi semiconductor material having a first lateral width at an upper surface thereof. A second epi semiconductor material is positioned on the first epi semiconductor material, the second epi semiconductor material extending laterally over and covering at least a portion of an uppermost end of the sidewall spacer and having a second lateral width at an upper surface thereof that is greater than the first lateral width. A metal silicide region is positioned on the upper surface of the second epi semiconductor material.
Abstract:
One illustrative device disclosed herein includes, among other things, a semiconductor substrate, a fin structure, a gate structure positioned around a portion of the fin structure in the channel region of the device, spaced-apart portions of a second semiconductor material positioned vertically between the fin structure and the substrate, wherein the second semiconductor material is a different semiconductor material than that of the fin, and a local channel isolation material positioned laterally between the spaced-apart portions of the second semiconductor material and vertically below the fin structure and the gate structure, wherein the local channel isolation material is positioned under at least a portion of the channel region of the device.
Abstract:
A method that involves forming a high-k gate insulation layer, a work-function adjusting metal layer and a metal protection layer in first and second replacement gate cavities, wherein the metal protection layer is formed so as to pinch-off the first gate cavity while leaving the second gate cavity partially un-filled, forming a first bulk conductive metal layer in the un-filled portion of the second gate cavity, removing substantially all of the metal protection layer in the first gate cavity while leaving a portion of the metal protection layer in the second gate cavity, forming a second conductive metal layer within the first and second replacement gate cavities, recessing the conductive metal layers so as to define first and second gate-cap cavities in the first and second replacement gate cavities, respectively, and forming gate cap layers within the first and second gate-cap cavities.
Abstract:
One method disclosed includes, among other things, forming a structure comprised of an island of a first insulating material positioned between the gate structures above the source/drain region and under a masking layer feature of a patterned masking layer, forming a liner layer that contacts the island of insulating material and the masking layer feature, selectively removing the masking layer feature to thereby form an initial opening that is defined by the liner layer, performing at least one isotropic etching process through the initial opening to remove the island of first insulating material and thereby define a contact opening that exposes the source/drain region, and forming a conductive contact structure in the contact opening that is conductively coupled to the source/drain region.