Abstract:
An apparatus for coupling an integrated circuit (IC) package to a printed circuit board. The apparatus includes an interposer an interposer having a plurality of connections suitable for surface mounting on corresponding pads of a printed circuit board (PCB). The plurality of connections is arranged in a grid array. The interposer further includes a plurality of plated through holes. The apparatus further includes a substrate having a plurality of pins. The substrate is coupled to the interposer by inserting each of the plurality of pins into a corresponding one of the plurality of plated through holes of the interposer. An IC package including an IC is mounted on the substrate.
Abstract:
A power interconnection system comprising a plurality of z-axis compliant connectors passing power and ground signals between a first circuit board to a second circuit board is disclosed. The interconnection system provides for an extremely low impedance through a broad range of frequencies and allows for large amounts of current to pass from one substrate to the next either statically or dynamically. The interconnection system may be located close to the die or may be further away depending upon the system requirements. The interconnection may also be used to take up mechanical tolerances between the two substrates while providing a low impedance interconnect.
Abstract:
Method and system for moving a frozen adhesive particle towards a target body, comprising launching means (13) which are arranged to launch the particle (2) in its frozen form towards the target body (3, 4) via a movement path (14) through a gap (15) between the launching means and the target body. The medium in the gap may have a temperature above the adhesive particle's melting temperature. The launching means may be arranged to launch the particle at a high speed. The launching means and the target body may have a geometry causing that the movement path is substantially vertical or substantially horizontal.
Abstract:
Structures employed by a plurality of packages, printed circuit boards, connectors and interposers to create signal paths which reduce the deleterious signal quality issues associated with the use of through-holes. Disclosed structures can coexist with through-hole implementations.
Abstract:
The present invention relates to a compliant leaded interposer for resiliently attaching and electrically connecting a ball grid array package to a circuit board. The interposer may include a substrate, a plurality of pads, and a plurality of pins. The plurality of pads may be positioned substantially on the top surface of the substrate and arranged in a predetermined pattern substantially corresponding to the solder ball pattern on the ball grid array package. The plurality of pins may be positioned substantially perpendicular to the substrate and may extend through the substrate and the plurality of pads. The interposer may be configured to attach the ball grid array package to the circuit board such that each of the solder balls on the ball grid array package contacts at least a portion the plurality of pins and at least a portion of the plurality of pads and such that the each of the plurality of pins also connects to a contact on the circuit board.
Abstract:
Systems and methods for vertically stacking integrated circuit (IC) modules on a motherboard to conserve motherboard space and reduce power consumption are disclosed. IC modules can comprise processor circuitry, memory elements, communication circuitry, etc. Pins on each IC module can be directly inserted into lower IC module or into a socket layer that couples the IC modules. Heat generated by the IC modules can be dissipated by inserting heat dissipation layers into the vertical stack, between IC modules, or by placing a heat-dissipating sleeve around the stack. The IC modules themselves and/or heat-generating regions therein may be misaligned on their respective socket layers to further facilitate dissipating heat. Module stacks are scalable in that a user may add memory and/or processor modules as desired to increase device capability.
Abstract:
An adapter apparatus and methods for using in providing such adapter apparatus include providing a high density interconnect board (e.g., having a pattern of contact pads on a first side thereof corresponding to a packaged device, such as a micro lead frame package) and providing an interconnect device. Interconnect elements extend through a substrate of the interconnect device and are electrically connected to conductive pads on a second side of the high density interconnect board.
Abstract:
A power interconnection system comprising a plurality of z-axis compliant connectors passing power and ground signals between a first circuit board to a second circuit board is disclosed. The interconnection system provides for an extremely low impedance through a broad range of frequencies and allows for large amounts of current to pass from one substrate to the next either statically or dynamically. The interconnection system may be located close to the die or may be further away depending upon the system requirements. The interconnection may also be used to take up mechanical tolerances between the two substrates while providing a low impedance interconnect.
Abstract:
A microprocessor packaging architecture using a modular circuit board assembly that provides power to a microprocessor while also providing for integrated thermal and electromagnetic interference (EMI) is disclosed. The modular circuit board assembly comprises a substrate, having a component mounted thereon, a circuit board, including a circuit for supplying power to the component, and at least one conductive interconnect device disposed between the substrate and the circuit board, the conductive interconnect device configured to electrically couple the circuit to the component.
Abstract:
A semiconductor device includes a circuit board having an element mounting area, connecting pads positioned in the same surface side as the element mounting area and external connectors to be connected with the connecting pads, respectively; and a semiconductor element mounted on the element mounting area of the circuit board and having electrode pads to be electrically connected with the connecting pads, respectively. The external connectors are detachably configured through a combination of convex portions and concave portions which are mechanically and electrically connected with one another.