Abstract:
Embodiments of the present description relate to the field of fabricating microelectronic structures. The microelectronic structures may include a glass routing structure formed separately from a trace routing structure, wherein the glass routing structure is incorporated with the trace routing substrate, either in a laminated or embedded configuration. Also disclosed are embodiments of a microelectronic package including at least one microelectronic device disposed proximate to the glass routing structure of the microelectronic substrate and coupled with the microelectronic substrate by a plurality of interconnects. Further, disclosed are embodiments of a microelectronic structure including at least one microelectronic device embedded within a microelectronic encapsulant having a glass routing structure attached to the microelectronic encapsulant and a trace routing structure formed on the glass routing structure.
Abstract:
Microelectronic assemblies, and related devices and methods, are disclosed herein. For example, in some embodiments, a microelectronic assembly may include a package substrate including a dielectric material having a first surface and an opposing second surface, a first material on at least a portion of the second surface, and a second material on at least a portion of the first material, wherein the second material has a different material composition than the first material.
Abstract:
An apparatus is provided which comprises: a plurality of first conductive contacts having a first pitch spacing on a substrate surface, a plurality of second conductive contacts having a second pitch spacing on the substrate surface, and a plurality of conductive interconnects disposed within the substrate to couple a first grouping of the plurality of second conductive contacts associated with a first die site with a first grouping of the plurality of second conductive contacts associated with a second die site and to couple a second grouping of the plurality of second conductive contacts associated with the first die site with a second grouping of the plurality of second conductive contacts associated with the second die site, wherein the conductive interconnects to couple the first groupings are present in a layer of the substrate above the conductive interconnects to couple the second groupings. Other embodiments are also disclosed and claimed.
Abstract:
Carbon nanofiber capacitor apparatus and related methods are disclosed herein. An example apparatus includes an integrated circuit package substrate, and a capacitor provided in the integrated circuit package substrate. The capacitor includes a carbon fiber array, a dielectric film positioned on the carbon fiber array, and an electrode film positioned on the dielectric film.
Abstract:
A method of forming a waveguide comprises forming an elongate waveguide core including a dielectric material; and arranging a conductive sheet around an outside surface of the dielectric core to produce a conductive layer around the waveguide core.
Abstract:
Disclosed herein are integrated circuit (IC) package supports and related apparatuses and methods. For example, in some embodiments, a method for forming an IC package support may include forming a first dielectric material having a surface; forming a first conductive via in the first dielectric material, wherein the first conductive via has tapered sidewalls with an angle that is equal to or less than 80 degrees relative to the surface of the first dielectric material; forming a second dielectric material, having a surface, on the first dielectric material; and forming a second conductive via in the second dielectric material, wherein the second conductive via is electrically coupled to the first conductive via, has tapered sidewalls with an angle that is greater than 80 degrees relative to the surface of the second dielectric material, and a maximum diameter between 2 microns and 20 microns.
Abstract:
Disclosed herein are microelectronic assemblies including microelectronic components that are coupled together by direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component, including an organic dielectric material; a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes metal contacts and a dielectric material between adjacent ones of the metal contacts, and wherein the dielectric material includes an inorganic dielectric material; and a third microelectronic component coupled to the first microelectronic component by wire bonding or solder.
Abstract:
Disclosed herein are microelectronic assemblies including microelectronic components that are coupled together by direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes at least part of an inductor.
Abstract:
Disclosed herein are microelectronic assemblies including direct bonding, as well as related structures and techniques. For example, in some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes a first subregion and a second subregion, and the first subregion has a greater metal density than the second subregion. In some embodiments, a microelectronic assembly may include a first microelectronic component and a second microelectronic component coupled to the first microelectronic component by a direct bonding region, wherein the direct bonding region includes a first metal contact and a second metal contact, the first metal contact has a larger area than the second metal contact, and the first metal contact is electrically coupled to a power/ground plane of the first microelectronic component.