Abstract:
Methods and apparatus for processing using a remote plasma source are disclosed. The apparatus includes an outer chamber enclosing a substrate support, a remote plasma source, and a showerhead. A substrate heater can be mounted in the substrate support. A transport system moves the substrate support and is capable of positioning the substrate. The remote plasma source may be used to provide a plasma surface treatment or as a source to incorporate dopants into a pre-deposited layer.
Abstract:
A method for depositing graphene is provided. The method includes depositing a layer of non-conducting amorphous carbon over a surface of a substrate and depositing a transition metal in a pattern over the amorphous carbon. The substrate is annealed at a temperature below 500° C., where the annealing converts the non-conducting amorphous carbon disposed under the transition metal to conducting amorphous carbon. A portion of the pattern of the transition metal is removed from the surface of the substrate to expose the conducting amorphous carbon.
Abstract:
Metal gate high-k capacitor structures with lithography patterning are used to extract gate work function using a combinatorial workflow. Oxide terracing, together with high productivity combinatorial process flow for metal deposition can provide optimum high-k gate dielectric and metal gate solutions for high performance logic transistors. Surface treatments can be inserted at three possible steps during the formation of the MOSCAP structures. The high productivity combinatorial technique can provide an evaluation of effective work function for given high-k dielectric metal gate stacks for PMOS and NMOS transistors, which is critical in identifying and selecting the right materials.
Abstract:
A barrier film including at least one ferromagnetic metal (e.g., nickel) and at least one refractory metal (e.g., tantalum) effectively blocks copper diffusion and facilitates uniform contiguous (non-agglomerating) deposition of copper layers less than 100 Å thick. Methods of forming the metal barrier include co-sputtering the component metals from separate targets. Using high-productivity combinatorial (HPC) apparatus and methods, the proportions of the component metals can be optimized. Gradient compositions can be deposited by varying the plasma power or throw distance of the separate targets.
Abstract:
Remote-plasma treatments of surfaces, for example in semiconductor manufacture, can be improved by preferentially exposing the surface to only a selected subset of the plasma species generated by the plasma source. The probability that a selected species reaches the surface, or that an unselected species is quenched or otherwise converted or diverted before reaching the surface, can be manipulated by introducing additional gases with selected properties either at the plasma source or in the process chamber, varying chamber pressure or flow rate to increase or decrease collisions, or changing the dimensions or geometry of the injection ports, conduits and other passages traversed by the species. Some example processes treat surfaces preferentially with relatively low-energy radicals, vary the concentration of radicals at the surface in real time, or clean and passivate in the same unit process.
Abstract:
Semiconductor devices and methods of making thereof are disclosed. A field effect transistor (FET) is provided comprising a substrate, a first layer disposed above the substrate, the first layer being operable as a gate electrode, a second layer disposed above the first layer, the second layer comprising a dielectric material, a third layer disposed above the second layer, the third layer comprising a semiconductor, and a fourth layer comprising one or more conductive materials and operable as source and drain electrodes disposed above the third layer. In some embodiments, the dielectric material comprises a high-κ dielectric. In some embodiments, the source and drain electrodes comprise one or more metals. The source and drain electrodes are each in ohmic contact with an area of the top surface of the third layer, and substantially all of the current through the transistor flows through the ohmic contacts.
Abstract:
A germanium-containing semiconductor surface is prepared for formation of a dielectric overlayer (e.g., a thin layer of high-k gate dielectric) by (1) removal of native oxide, for example by wet cleaning, (2) additional cleaning with hydrogen species, (3) in-situ formation of a controlled monolayer of GeO2, and (4) in-situ deposition of the dielectric overlayer to prevent uncontrolled regrowth of native oxide. The monolayer of GeO2 promotes uniform nucleation of the dielectric overlayer, but it too thin to appreciably impact the effective oxide thickness of the dielectric overlayer.
Abstract:
An apparatus that includes a base, a sidewall extending from the base, and a lid disposed over a top of the sidewall is provided. A plasma generating source extends through a surface of the lid. A rotatable substrate support is disposed within the chamber above a surface of the base, the rotatable substrate support operable to vertically translate from the base to the lid. A first fluid inlet extends into a first surface of the sidewall and a second fluid inlet extends into a second surface of the sidewall. The plasma generating source provides a plasma activated species to a region of a surface of a substrate supported on the rotatable substrate support and a fluid delivered proximate to the region from one of the first or the second fluid inlet interacts with the plasma activated species to deposit a layer of material over the region.
Abstract:
Embodiments described herein provide interconnect barrier layers and methods for forming such barriers. A dielectric body having a trench formed in a surface thereof is provided. A first layer is formed above the dielectric body within the trench. The first layer includes amorphous carbon. A second layer is formed above the first layer. The second layer includes a metal. The dielectric body, the first layer, and the second layer are heated to convert at least some of the amorphous carbon to graphene.
Abstract:
A method for depositing graphene is provided. The method includes depositing a layer of non-conducting amorphous carbon over a surface of a substrate and depositing a transition metal in a pattern over the amorphous carbon. The substrate is annealed at a temperature below 500° C., where the annealing converts the non-conducting amorphous carbon disposed under the transition metal to conducting amorphous carbon. A portion of the pattern of the transition metal is removed from the surface of the substrate to expose the conducting amorphous carbon.