Abstract:
Embodiments of the present invention provide an apparatus and method for wafer thinning endpoint detection. Embodiments of the present invention utilize through silicon via (TSV) structures formed in the wafer. A specially made wafer handle is bonded to the wafer. Conductive slurry is used in the wafer backside thinning process. The wafer handle provides electrical connectivity to an electrical measurement tool, and conductive posts in the wafer handle are proximal to a test structure on the wafer. A plurality of electrically isolated TSVs is monitored via the electrical measurement tool. When the TSVs are exposed on the backside as a result of thinning, the conductive slurry shorts the electrically isolated TSVs, changing the electrical properties of the plurality of TSVs. The change in electrical properties is detected and used to trigger termination of the wafer backside thinning process.
Abstract:
A structure includes a substrate comprising a region having a circuit or device which is sensitive to electrical noise. Additionally, the structure includes a first isolation structure extending through an entire thickness of the substrate and surrounding the region and a second isolation structure extending through the entire thickness of the substrate and surrounding the region.
Abstract:
Embodiments of the present invention provide a circuit and method to characterize the impact of bias temperature instability on semiconductor devices. The circuit comprises a transistor having a gate, drain, source, and body terminal. Two AC pad sets each having a plurality of conductive pads. Two DC pads are in communication with a DC supply and/or meter. The gate terminal is in communication with a first conductive pad included in the plurality of conductive pads of each of the AC pad sets. The drain terminal is in communication with a second conductive pad of an AC pad set and the source terminal with a second conductive pad of another AC pad set. One DC pad is in communication with the gate terminal through a first serial resistor and another DC pad with the body terminal through a second serial resistor and provides an open-circuit for the gate and body terminals.
Abstract:
Various embodiments include wafer level chip scale package (WLCSP) structures and methods of tuning such structures. In some embodiments, the WLCSP structure includes: a printed circuit board (PCB) trace connection including at least one PCB ground connection connected with a PCB ground plane; a set of ground solder balls each contacting the printed circuit board trace connection; a set of chip pads contacting each of the ground solder balls in the set of ground solder balls; a chip ground plane connecting the set of chip pads; and a signal interconnect interposed between two of the set of ground solder balls, the signal interconnect including: a signal trace connection electrically isolated from the PCB ground plane; a signal ball contacting the signal PCB trace connection; a chip pad contacting the signal ball, and a signal trace connection on a chip contacting the chip pad.
Abstract:
On-chip millimeter wave (mmW) notch filters with via stubs, methods of manufacture and design structures are disclosed. The notch filter includes a signal line comprising a metal trace line connected to a metal via stub partially extending into a semiconductor substrate. The notch filter further includes a defected ground plane connected to at least one or more additional metal via stubs partially extending into the semiconductor substrate.
Abstract:
A method of forming and structure for through wafer vias and signal transmission lines formed of through wafer vias. The structure includes, a semiconductor substrate having a top surface and an opposite bottom surface; and an array of through wafer vias comprising at least one electrically conductive through wafer via and at least one electrically non-conductive through wafer via, each through wafer via of the array of through wafer vias extending from the top surface of to the bottom surface of the substrate, the at least one electrically conductive via electrically isolated from the substrate.
Abstract:
Tunable phase shifters and methods for using the same include a signal line; one or more grounding lines; one or more crossing lines below the signal line in proximity to the signal line and substantially perpendicular to a longitudinal direction of the signal line, where the crossing lines conform to the shape of the signal line along at least three surfaces of the signal line and where the crossing lines have a tunable capacitance; and an inductance return line below the crossing lines substantially parallel to the longitudinal direction of the signal line, where the inductance return line provides a tunable inductance.
Abstract:
A system, method and apparatus may comprise a wafer having a plurality of spiral test structures located on the kerf of the wafer. The spiral test structure may comprise a spiral connected at either end by a capacitor to allow the spiral test structure to resonate. The spiral structures may be located on a first metal layer or on multiple metal layers. The system may further incorporate a test apparatus having a frequency transmitter and a receiver. The test apparatus may be a sensing spiral which may be placed over the spiral test structures. A controller may provide a range of frequencies to the test apparatus and receiving the resonant frequencies from the test apparatus. The resonant frequencies will be seen as reductions in signal response at the test apparatus.
Abstract:
Approaches for an on-chip antenna are provided. A method includes forming an antenna in an insulator layer at a front side of a substrate. The method also includes forming a trench in the substrate underneath the antenna. The method further includes forming a fill material in the trench. The substrate is composed of a material having a first dielectric constant. The fill material has a second dielectric constant that is less than the first dielectric constant.
Abstract:
A test circuit for a ring oscillator comprising a plurality of inverting stages includes a power supply, the power supply configured to provide a voltage to the plurality of inverting stages of the ring oscillator at a power output; and a power sensing resistor located between the power output of the power supply and direct current (DC) bias inputs of the inverting stages of the ring oscillator, wherein a signal from the power sensing resistor is configured to be monitored to determine a characteristic of the ring oscillator.