Abstract:
Provided are an apparatus and a method for treating substrates. The apparatus includes a process chamber, a support plate to support a substrate inside the process chamber, a gas supply unit to supply a gas into the process chamber, a first plasma generation unit provided to generate plasma inside the process chamber, and a second plasma generation unit provided to generate plasma outside the process chamber. An etching process, an ashing process, an edge cleaning process, and a back-surface cleaning process are sequentially performed on the substrate inside the process chamber.
Abstract:
A cleaning apparatus of an exhaust path of a process reaction chamber used in a manufacturing of articles including a semiconductor or an LCD. The cleaning apparatus of the exhaust path includes a housing having an inflow pipe, connected to an upstream end of the exhaust path, an outflow pipe, connected to a downstream end of the exhaust path, and a connecting pipe disposed between the inflow pipe and the outflow pipe. A radio frequency generator in the housing applies radio frequency power to the inflow pipe and to the outflow pipe via respective coils. Plasma induced within the inflow and outflow pipes from RF power applied via the respective coils causes the generation of radicals from the exhaust gas flowing within. The radicals act to dislodge accumulated particulates within the exhaust path downstream of the cleaning apparatus.
Abstract:
A system and method for providing intermediate reactive species from a remote plasma unit to a reaction chamber are disclosed. The system includes a pressure control device to control a pressure at the remote plasma unit as intermediate reactive species from the remote plasma unit are provided to the reaction chamber.
Abstract:
Embodiments disclosed herein include a method for abating compounds produced in semiconductor processes. The method includes energizing an abating agent, forming a composition by reacting the energized abating agent with gases exiting a vacuum processing chamber, and flowing the composition through a plurality of holes formed in a cooling plate. By cooling the composition with the cooling plate, damages on the downstream pump are avoided.
Abstract:
Embodiments disclosed herein include a plasma source, an abatement system and a vacuum processing system for abating compounds produced in semiconductor processes. In one embodiment, a plasma source includes a dielectric tube and a coil antenna surrounding the tube. The coil antenna includes a plurality of turns, and at least one turn is shorted. Selectively shorting one or more turns of the coil antenna helps reduce the inductance of the coil antenna, allowing higher power to be supplied to the coil antenna that covers more processing volume. Higher power supplied to the coil antenna and larger processing volume lead to an improved DRE.
Abstract:
A semiconductor device manufacturing method includes: a step wherein a processing substrate to be processed is placed on a substrate mounting member that is provided in a processing chamber having a plurality of gas supply regions; a film-forming step wherein a processing gas is supplied to the processing chamber, and the substrate is processed; a step wherein the substrate is carried out from the processing chamber; and a cleaning step wherein the density of the cleaning gas is controlled, while controlling cleaning gas quantities in the gas supply regions, respectively, in a state wherein the substrate is not placed in the processing chamber.
Abstract:
Systems and methods for operating a substrate processing system include processing a substrate arranged on a substrate support in a processing chamber. At least one of precursor gas and/or reactive gas is supplied during the processing. The substrate is removed from the processing chamber. Carrier gas and purge gas are selectively supplied to the processing chamber. RF plasma is generated in the processing chamber during N cycles, where N is an integer greater than one. The RF plasma is on for a first period and off for a second period during each of the N cycles. The purge gas is supplied during at least part of each of the N cycles.
Abstract:
A system to generate plasma to clean at least one object, the apparatus comprising a microplate with an electrode support array comprising a plurality of matched pairs of elongated dielectric barrier members connected to a plurality of electrodes, with said dielectric barrier members of said matched pair being spaced at a pre-determined non-uniform gap, a variable time scale pulsed power source electrically coupled to said electrodes to provide electrical pulses and a plurality of electronic components to control polarity of said electrical pulses, such that said pulses produce electron streamers from opposing elongated dielectric barrier members of said plurality of matched pairs and charge on a surface of said dielectric barrier member is substantially evenly distributed.
Abstract:
Embodiments disclosed herein include an abatement system for abating compounds produced in semiconductor processes. The abatement system includes a plasma source that has a first plate and a second plate parallel to the first plate. An electrode is disposed between the first and second plates and an outer wall is disposed between the first and second plates surrounding the electrode. The plasma source has a first plurality of magnets disposed on the first plate and a second plurality of magnets disposed on the second plate. The magnetic field created by the first and second plurality of magnets is substantially perpendicular to the electric field created between the electrode and the outer wall. In this configuration, a dense plasma is created.
Abstract:
Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. In an example, a method of dicing a semiconductor wafer having a plurality of integrated circuits involves forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The mask is then patterned with an adaptive optics-controlled laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then plasma etched through the gaps in the patterned mask to singulate the integrated circuits.