Abstract:
The disclosure concerns a method of stressing a semiconductor layer comprising: forming, over a silicon on insulator structure having a semiconductor layer in contact with an insulating layer, one or more stressor blocks aligned with first regions of said semiconductor layer in which transistor channels are to be formed, wherein said stressor blocks are stressed such that they locally stress said semiconductor layer; and deforming second regions of said insulating layer adjacent to said first regions by temporally decreasing, by annealing, the viscosity of said insulator layer.
Abstract:
A multichannel splitter formed from 1 to 2 splitters. An input terminal of a first 1 to 2 splitter defines an input of the multichannel splitter. The 1 to 2 splitters are electrically series-connected. First respective outputs of the 1 to 2 splitters define output terminals of the multichannel splitter.
Abstract:
The invention relates to a method for producing an interconnection pad on a conducting element comprising an upper face and a side wall; the method being executed from a substrate at least the upper face of which is insulating; the conducting element going through at least an insulating portion of the substrate, the method being characterized in that it comprises the sequence of the following steps: a step of embossing the conducting element, a step of forming, above the upper insulating face of the substrate, a stack of layers comprising at least one electrically conducting layer and one electrically resistive layer, a step of partially removing the electrically resistive layer, a step of electrolytic growth on the portion of the electrically conducting layer so as to form at least one interconnection pad on said conducting element.
Abstract:
The present disclosure relates to a photodiode comprising: a P-conductivity type substrate region, an electric charge collecting region for collecting electric charges appearing when a rear face of the substrate region receives light, the collecting region comprising an N-conductivity type region formed deep in the substrate region, an N-conductivity type read region formed in the substrate region, and an isolated transfer gate, formed in the substrate region in a deep isolating trench extending opposite a lateral face of the N-conductivity type region, next to the read region, and arranged for receiving a gate voltage to transfer electric charges stored in the collecting region toward the read region.
Abstract:
A method of manufacturing a heat pipe, including the steps of: forming in a substrate a cylindrical opening provided with a plurality of ring-shaped recessed radially extending around a central axis of the opening; arranging in the recesses separate ring-shaped strips made of a material catalyzing the growth of carbon nanotubes; and growing carbon nanotubes in the opening from said ring-shaped strips.
Abstract:
Program code intended to be copied into the cache memory of a microprocessor is transferred encrypted between the random-access memory and the processor, and the decryption is carried out at the level of the cache memory. A checksum may be inserted into the cache lines in order to allow integrity verification, and this checksum is then replaced with a specific instruction before delivery of an instruction word to the central unit of the microprocessor.
Abstract:
A method for producing a capacitor stack in one portion of a substrate, the method including: forming a cavity along a thickness of the portion of the substrate from an upper face of the substrate, depositing a plurality of layers contributing to the capacitor stack onto the wall of the cavity and onto the surface of the upper face, and removing matter from the layers until the surface of the upper face is reached. The forming of the cavity includes forming at least one trench and, associated with each trench, at least one box. The at least one trench includes a trench outlet that opens into the box. The box includes a box outlet that opens at the surface of the upper face, and the box outlet being shaped to be larger than the trench outlet.
Abstract:
A device includes a support, a three-dimensional integrated structure above the support, and a lateral encapsulation region arranged around the structure. The lateral encapsulation region includes first channels configured to make it possible to circulate a cooling fluid.
Abstract:
An integrated imaging device supports front face illumination with one or more photosensitive regions formed in a substrate. A lower dielectric region is provided over the substrate, the lower dielectric region having an upper face. A metal optical filter having a metal pattern is provided on the upper face (or extending into the lower dielectric region from the upper face). An upper dielectric region is provided on top of the lower dielectric region and metal optical filter. The lower dielectric region is at least part of a pre-metal dielectric layer, and the upper dielectric region is at least part of a metallization layer.
Abstract:
A method of circuit simulation includes: simulating, by a processing device, behavior of a heterojunction bipolar transistor device based on at least a first base-emitter voltage of the transistor to determine a first base or collector current density of the HBT device; and determining whether the application of the first base-emitter voltage to the HBT device will result in base current degradation by performing a first comparison of the first current density with a first current density limit.