Abstract:
An optoelectronic module and a connecting piece for the module with respect to an optical fiber and with respect to a circuit board can have a semiconductor chip in the form of an optical transmitter chip, which has a light-wave-emitting top side and has a rear side contact as a cathode on its rear side. Further semiconductor chips are embedded in a plastics composition with the optical transmitter chip in such a way that a coplanar overall top side is formed from the plastics composition and the active top side.
Abstract:
A semiconductor device includes an electrically conducting carrier and a semiconductor chip disposed over the carrier. The semiconductor device also includes a porous diffusion solder layer provided between the carrier and the semiconductor chip.
Abstract:
A method for fabricating a semiconductor chip module and a semiconductor chip package is disclosed. One embodiment provides a first layer, a second layer, and a base layer. The first layer is disposed on the base layer, and the second layer is disposed on the first layer. A plurality of semiconductor chips is applied above the second layer, and the second layer with the applied semiconductor chips is separated from the first layer.
Abstract:
A semiconductor device and manufacturing method. One embodiment provides a semiconductor chip. An encapsulating material covers the semiconductor chip. A metal layer is over the semiconductor chip and the encapsulating material. At least one of a voltage generating unit and a display unit are rigidly attached to at least one of the encapsulating material and the metal layer.
Abstract:
A method for fabricating a device includes providing a substrate including at least one contact and applying a dielectric layer over the substrate. The method includes applying a first seed layer over the dielectric layer, applying an inert layer over the seed layer, and structuring the inert layer, the first seed layer, and the dielectric layer to expose at least a portion of the contact. The method includes applying a second seed layer over exposed portions of the structured dielectric layer and the contact such that the second seed layer makes electrical contact with the structured first seed layer. The method includes electroplating a metal on the second seed layer.
Abstract:
A method for fabricating a semiconductor chip module and a semiconductor chip package is disclosed. One embodiment provides a first layer, a second layer, and a base layer. The first layer is disposed on the base layer, and the second layer is disposed on the first layer. A plurality of semiconductor chips is applied above the second layer, and the second layer with the applied semiconductor chips is separated from the first layer.
Abstract:
One aspect of the invention relates to a semiconductor component with cavity structure and a method for producing the same. The semiconductor component has an active semiconductor chip with the microelectromechanical structure and a wiring structure on its top side. The microelectromechanical structure is surrounded by walls of at least one cavity. A covering, which covers the cavity, is arranged on the walls. The walls have a photolithographically patterned polymer. The covering has a layer with a polymer of identical type. In one case, the molecular chains of the polymer of the walls are crosslinked with the molecular chains of the polymer layer of the covering layer to form a dimensionally stable cavity housing.
Abstract:
One method includes fabricating a semiconductor device including providing a dielectric layer. At least one semiconductor chip is provided defining a first surface including contact elements and a second surface opposite to the first surface. The semiconductor chip is placed onto the dielectric layer with the first surface facing the dielectric layer. An encapsulant material is applied over the second surface of the semiconductor chip in a reel-to-reel process.
Abstract:
Stacked semiconductor chips are disclosed. One embodiment provides an array of first semiconductor chips, covering the array of the first semiconductor chips with a mold material, and placing an array of second semiconductor chips over the array of the first semiconductor chips. The thicknesses of the second semiconductor chips is reduced. The array of the first semiconductor chips are singulated by dividing the mold material.