DOUBLE-GATED FERROELECTRIC FIELD-EFFECT TRANSISTOR

    公开(公告)号:US20220181335A1

    公开(公告)日:2022-06-09

    申请号:US17673670

    申请日:2022-02-16

    Abstract: A ferroelectric field-effect transistor (FeFET) includes first and second gate electrodes, source and drain regions, a semiconductor region between and physically connecting the source and drain regions, a first gate dielectric between the semiconductor region and the first gate electrode, and a second gate dielectric between the semiconductor region and the second gate electrode. The first gate dielectric includes a ferroelectric dielectric. In an embodiment, a memory cell includes this FeFET, with the first gate electrode being electrically connected to a wordline and the drain region being electrically connected to a bitline. In another embodiment, a memory array includes wordlines extending in a first direction, bitlines extending in a second direction, and a plurality of such memory cells at crossing regions of the wordlines and the bitlines. In each memory cell, the wordline is a corresponding one of the wordlines and the bitline is a corresponding one of the bitlines.

    TECHNIQUES AND MECHANISMS FOR OPERATION OF STACKED TRANSISTORS

    公开(公告)号:US20210288049A1

    公开(公告)日:2021-09-16

    申请号:US17334425

    申请日:2021-05-28

    Abstract: Techniques and mechanisms for operating transistors that are in a stacked configuration. In an embodiment, an integrated circuit (IC) device includes transistors arranged along a line of direction which is orthogonal to a surface of a semiconductor substrate. A first epitaxial structure and a second epitaxial structure are coupled, respectively, to a first channel structure of a first transistor and a second channel structure of a second transistor. The first epitaxial structure and the second epitaxial structure are at different respective levels relative to the surface of the semiconductor substrate. A dielectric material is disposed between the first epitaxial structure and the second epitaxial structure to facilitate electrical insulation of the channels from each other. In another embodiment, the stacked transistors are coupled to provide a complementary metal-oxide-semiconductor (CMOS) inverter circuit.

    TECHNIQUES AND MECHANISMS FOR OPERATION OF STACKED TRANSISTORS

    公开(公告)号:US20200098754A1

    公开(公告)日:2020-03-26

    申请号:US16606702

    申请日:2017-06-29

    Abstract: Techniques and mechanisms for operating transistors that are in a stacked configuration. In an embodiment, an integrated circuit (IC) device includes transistors arranged along a line of direction which is orthogonal to a surface of a semiconductor substrate. A first epitaxial structure and a second epitaxial structure are coupled, respectively, to a first channel structure of a first transistor and a second channel structure of a second transistor. The first epitaxial structure and the second epitaxial structure are at different respective levels relative to the surface of the semiconductor substrate. A dielectric material is disposed between the first epitaxial structure and the second epitaxial structure to facilitate electrical insulation of the channels from each other. In another embodiment, the stacked transistors are coupled to provide a complementary metal-oxide-semiconductor (CMOS) inverter circuit.

    FABRICATION OF UNDOPED HFO2 FERROELECTRIC LAYER USING PVD

    公开(公告)号:US20200066511A1

    公开(公告)日:2020-02-27

    申请号:US16113159

    申请日:2018-08-27

    Abstract: Embodiments disclosed herein comprise a ferroelectric material layer and methods of forming such materials. In an embodiment, the ferroelectric material layer comprises hafnium oxide with an orthorhombic phase. In an embodiment, the ferroelectric material layer may also comprise trace elements of a working gas. Additional embodiments may comprise: a semiconductor channel, a source region on a first end of the semiconductor channel, a drain region on a second end of the semiconductor channel, a gate electrode over the semiconductor channel, and a gate dielectric between the gate electrode and the semiconductor channel. In an embodiment, the gate dielectric includes a ferroelectric hafnium oxide. In an embodiment, the hafnium oxide is substantially free from dopants.

Patent Agency Ranking