Abstract:
A method for fabricating an electronic package is provided, which includes the steps of: providing an insulating layer having at least an electronic element embedded therein; forming at least a first via hole on one side of the insulating layer; forming a first conductor in the first via hole of the insulating layer; forming on the insulating layer a first circuit structure electrically connected to the electronic element and the first conductor; and forming a second via hole on the other side of the insulating layer, wherein the second via hole communicates with the first via hole. As such, the second via hole and the first via hole constitute a through hole. Since the through hole is fabricated through two steps, the aspect ratio (depth/width) of the through hole can be adjusted according to the practical need so as to improve the process yield.
Abstract:
Provided is a substrate structure, including a substrate having at least one chamfer formed on a surface thereof, and a plurality of conductive bodies formed to the substrate. Therefore, a stress generated during the packaging process is alleviated through the chamfer, and the substrate structure is prevented from being cracked. An electronic package employing the substrate structure is also provided.
Abstract:
A method for fabricating a conductive via structure is provided, which includes the steps of: forming in an encapsulant a plurality of openings penetrating therethrough; forming a dielectric layer on the encapsulant and in the openings of the encapsulant; forming a plurality of vias in the dielectric layer in the openings of the encapsulant; and forming a conductive material in the vias to thereby form conductive vias. Therefore, by filling the openings having rough wall surfaces with the dielectric layer so as to form the vias having even wall surfaces, the present invention improves the quality of the conductive vias.
Abstract:
A conductive bump structure used to be formed on a substrate having a plurality of bonding pads. The conductive bump structure includes a first metal layer formed on the bonding pads, a second metal layer formed on the first metal layer, and a third metal layer formed on the second metal layer. The second metal layer has a second melting point higher than a third melting point of the third metal layer. Therefore, a thermal compression bonding process is allowed to be performed to the third metal layer first so as to bond the substrate to another substrate, and then a reflow process can be performed to melt the second metal layer and the third metal layer into each other so as to form an alloy portion, thus avoiding cracking of the substrate.
Abstract:
A semiconductor package is provided, which includes: a carrier; a frame having a plurality of openings, wherein the frame is bonded to the carrier and made of a material different from that of the carrier; a plurality of electronic elements disposed in the openings of the frame, respectively; an encapsulant formed in the openings of the frame for encapsulating the electronic elements; and a circuit layer formed on and electrically connected to the electronic elements. By accurately controlling the size of the openings of the frame, the present invention increases the accuracy of positioning of the electronic elements so as to improve the product yield in subsequent processes.
Abstract:
A semiconductor package is provided. The semiconductor package includes a semiconductor chip having opposite first and second surfaces; an RDL structure formed on the first surface of the semiconductor chip and having opposite third and fourth surfaces and a plurality of first conductive through holes penetrating the third and fourth surfaces thereof, wherein the RDL structure is formed on the semiconductor chip through the fourth surface thereof and electrically connected to the semiconductor chip through a plurality of first conductive elements, and the third surface of the RDL structure has a redistribution layer formed thereon; a plurality of conductive bumps formed on the redistribution layer; and an encapsulant formed on the first surface of the semiconductor chip for encapsulating the RDL structure, wherein the conductive bumps are embedded in and exposed from the encapsulant. The invention effectively prevents warpage of the semiconductor package and improves the electrical connection significantly.
Abstract:
A method for fabricating a package structure is provided, including the steps of: sequentially forming a metal layer and a dielectric layer on a first carrier, wherein the dielectric layer has a plurality of openings exposing portions of the metal layer; disposing an electronic element on the dielectric layer via an active surface thereof and mounting a plurality of conductive elements of metal balls on the exposed portions of the metal layer; forming an encapsulant on the dielectric layer for encapsulating the electronic element and the conductive elements; removing the first carrier; and patterning the metal layer into first circuits and forming second circuits on the dielectric layer, wherein the second circuits are electrically connected to the electronic element and the first circuits. The invention dispenses with the conventional laser ablation process so as to simplify the fabrication process, save the fabrication cost and increase the product reliability.
Abstract:
A method for fabricating a semiconductor structure is disclosed. First, an interposer is disposed on a carrier. The carrier has a base body and a bonding layer bonded to the base body. The interposer has opposite first and second sides and the first side has a plurality of conductive elements. The interposer is disposed on the carrier with the first side bonded to the bonding layer and the conductive elements embedded in the bonding layer. Then, at least a semiconductor element is disposed on the second side of the interposer. As such, the semiconductor element and the interposer form a semiconductor structure. Since the conductive elements are embedded in the bonding layer instead of the base body, the present invention eliminates the need to form concave portions in the base body for receiving the conductive elements. Therefore, the method of the present invention is applicable to interposers of different specifications.
Abstract:
A method of testing a semiconductor package is provided, including: disposing at least an interposer on a top surface of an adhesive layer, the interposer having a first surface and a second surface opposite to the first surface, a plurality of conductive elements disposed between the second surface of the interposer and the adhesive layer; disposing at least a semiconductor chip on the first surface of the interposer, and performing an electrical test on the semiconductor chip via the conductive elements, wherein if there are a plurality of semiconductor chips that are disposed on the first surface of the interposer, the step of disposing the semiconductor chip and performing the electrical test on the semiconductor chip is iterated; and removing the adhesive layer. By using the method, the fabrication cost and equipment cost of the semiconductor package are reduced, and product yield is increased.
Abstract:
A semiconductor package is provided, including: a carrier; at least an interposer disposed on the carrier; an encapsulant formed on the carrier for encapsulating the interposer while exposing a top side of the interposer; a semiconductor element disposed on the top side of the interposer; and an adhesive formed between the interposer and the semiconductor element. By encapsulating the interposer with the encapsulant, warpage of the interposer is avoided and a planar surface is provided for the semiconductor element to be disposed thereon, thereby improving the reliability of electrical connection between the interposer and the semiconductor element.