Abstract:
A bonding structure with a buffer layer, and a method of forming the same are provided. The bonding structure comprises a first substrate with metal pads thereon, a protection layer covered on the surface of the substrate, a first adhesive metal layer formed on the metal pads, a buffer layer coated on the protection layer and the metal pads, a first metal layer covered on the buffer layer, and a second substrate with electrodes and a bonding layer thereon. The first metal layer, the electrodes and the bonding layer are bonded to form the bonding structure. Direct bonding can be performed through surface activation or heat pressure. The method uses fewer steps and is more reliable. The temperature required for bonding the structure is lower. The bonding density between the contacted surfaces is increased to a fine pitch. The quality at the bonding points is increased because fewer contaminations between the contacted surfaces are generated.
Abstract:
A manufacturing method of a contact structure includes first providing a substrate on which a contact pad has already been formed. Afterwards, a polymer bump is formed on the contact pad. Next, a conductive layer is formed on the polymer bump. The conductive layer covers the polymer bump and extends to the outside of the polymer bump. The portion of the conductive layer extending to the outside of the polymer bump serves as a test pad.
Abstract:
A method of fabricating a bonding structure having compliant bumps includes first providing a first substrate and a second substrate. The first substrate includes first bonding pads. The second substrate is disposed on one side of the first substrate and includes second bonding pads and compliant bumps disposed thereon. The second bonding pads are opposite to the first bonding pads. Next, a non-conductive adhesive layer and ball-shaped spacers are formed between the first and the second substrates. Finally, the first substrate, the non-conductive adhesive layer, and the second substrate are compressed, such that the compliant bumps on the second bonding pads of the second substrate pass through the non-conductive adhesive layer and are electrically connected to the first bonding pads of the first substrate, respectively. The ball-shaped spacers are distributed in the non-conductive adhesive layer sandwiched between the first and the second substrates for maintaining the gap therebetween.
Abstract:
A bonding structure with a buffer layer, and a method of forming the same are provided. The bonding structure comprises a first substrate with metal pads thereon, a protection layer covered on the surface of the substrate, a first adhesive metal layer formed on the metal pads, a buffer layer coated on the protection layer and the metal pads, a first metal layer covered on the buffer layer, and a second substrate with electrodes and a bonding layer thereon. The first metal layer, the electrodes and the bonding layer are bonded to form the bonding structure. Direct bonding can be performed through surface activation or heat pressure. The method uses fewer steps and is more reliable. The temperature required for bonding the structure is lower. The bonding density between the contacted surfaces is increased to a fine pitch. The quality at the bonding points is increased because fewer contaminations between the contacted surfaces are generated.
Abstract:
A bump structure on a substrate including at least one first electrode, at least one first bump, at least one second bump is provided. The first electrode is disposed on the substrate. The first bump is disposed on the first electrode. The second bump is disposed on the substrate. The height of the second bump is greater than that of the first bump. The elastic bump of the present invention can be used for measuring the bonding process quality.
Abstract:
A microelectronic structure having a substrate of multiple conductive bumps for contact with bond pads on an electronic substrate in the fabrication of a flip chip electronic assembly. Each of the conductive bumps includes a conductive layer which is absent from at least one sidewall of the bump to prevent the inadvertent formation of a short-circuiting electrical path between adjacent conductive bumps in the electronic assembly.
Abstract:
A contact structure having both a compliant bump and a testing area and a manufacturing method for the same is introduced. The compliant bump is formed on a conductive contact of the silicon wafer or a printed circuit board. The core of the bump is made of polymeric material, and coated with a conductive material. In particular, the compliant bump is disposed on the one side of the conductive contact structure that includes both the bump and the testing area, wherein the testing area allows the area to be functionality tested, so as to prevent damage of the coated conductive material over the compliant bump during a probe testing.
Abstract:
A bonding structure with a buffer layer, and a method of forming the same are provided. The bonding structure comprises a first substrate with metal pads thereon, a protection layer covered on the surface of the substrate, a first adhesive metal layer formed on the metal pads, a buffer layer coated on the protection layer and the metal pads, a first metal layer covered on the buffer layer, and a second substrate with electrodes and a bonding layer thereon. The first metal layer, the electrodes and the bonding layer are bonded to form the bonding structure. Direct bonding can be performed through surface activation or heat pressure. The method uses fewer steps and is more reliable. The temperature required for bonding the structure is lower. The bonding density between the contacted surfaces is increased to a fine pitch. The quality at the bonding points is increased because fewer contaminations between the contacted surfaces are generated.
Abstract:
A microelectronic structure having a substrate of multiple conductive bumps for contact with bond pads on an electronic substrate in the fabrication of a flip chip electronic assembly. Each of the conductive bumps includes a conductive layer which is absent from at least one sidewall of the bump to prevent the inadvertent formation of a short-circuiting electrical path between adjacent conductive bumps in the electronic assembly.
Abstract:
A bonded structure comprising the physical and electrical connections between an integrated circuit element and substrate using a composite bump comprised of a single polymer body of low Young's Modulus and a conductive metal coating. The bond can be formed using thermocompression bonding, ultrasonic bonding, application of heat or application of light. The bond can also be formed using a non conductive adhesive between the integrated circuit element and the substrate. The bond can also be formed with a conductive adhesive coating on the composite bump.