摘要:
Some embodiments of the present disclosure provide a semiconductor structure comprising: a substrate, a radiation-sensing region in the substrate, and a trench in the substrate including a liner over an inner wall of the trench, a FSG layer over the line, an oxide layer over the FSG layer, and a reflective material over the oxide layer. The radiation-sensing region of the semiconductor structure comprises a plurality of radiation-sensing units. The trench of the semiconductor structure separates at least two of the radiation-sensing units. The FSG layer of the semiconductor structure comprises at least 2 atomic percent free fluorine and a thickness of from about 500 to about 1300 angstroms.
摘要:
A bonding chuck is discussed with methods of using the bonding chuck and tools including the bonding chuck. A method includes loading a first wafer on first surface of a first bonding chuck, loading a second wafer on a second bonding chuck, and bonding the first wafer to the second wafer. The first surface is defined at least in part by a first portion of a first spherical surface and a second portion of a second spherical surface. The first spherical surface has a first radius, and the second spherical surface has a second radius. The first radius is less than the second radius.
摘要:
Embodiments of forming an image sensor with organic photodiodes are provided. Trenches are formed in the organic photodiodes to increase the PN-junction interfacial area, which improves the quantum efficiency (QE) of the photodiodes. The organic P-type material is applied in liquid form to fill the trenches. A mixture of P-type materials with different work function values and thickness can be used to meet the desired work function value for the photodiodes.
摘要:
A structure includes first and second substrates, first and second stress buffer layers, and a post-passivation interconnect (PPI) structure. The first and second substrates include first and second semiconductor substrates and first and second interconnect structures on the first and second semiconductor substrates, respectively. The second interconnect structure is on a first side of the second semiconductor substrate. The first substrate is bonded to the second substrate at a bonding interface. A via extends at least through the second semiconductor substrate into the second interconnect structure. The first stress buffer layer is on a second side of the second semiconductor substrate opposite from the first side of the second semiconductor substrate. The PPI structure is on the first stress buffer layer and is electrically coupled to the via. The second stress buffer layer is on the PPI structure and the first stress buffer layer.
摘要:
Non-volatile memories and methods of fabrication thereof are described. In one embodiment, a method of fabricating a semiconductor device includes forming an oxide layer over a semiconductor substrate, and exposing the oxide layer to a first nitridation step to form a first nitrogen rich region. The first nitrogen rich region is disposed adjacent an interface between the oxide layer and the semiconductor substrate. After the first nitridation step, the oxide layer is exposed to a second nitridation step to form a second nitrogen rich region. A first gate electrode is formed on the oxide layer, wherein the second nitrogen rich region is disposed adjacent an interface between the oxide layer and the first gate electrode.
摘要:
Various embodiments of the present disclosure are directed towards an amorphous bottom electrode structure (BES) for a metal-insulator-metal (MIM) capacitor. The MIM capacitor comprises a bottom electrode, an insulator layer overlying the bottom electrode, and a top electrode overlying the insulator layer. The bottom electrode comprises a crystalline BES and the amorphous BES, and the amorphous BES overlies the crystalline BES and forms a top surface of the bottom electrode. Because the amorphous BES is amorphous, instead of crystalline, a top surface of the amorphous BES may have a small roughness compared to that of the crystalline BES. Because the amorphous BES forms the top surface of the bottom electrode, the top surface of the bottom electrode may have a small roughness compared to what it would otherwise have if the crystalline BES formed the top surface. The small roughness may improve a lifespan of the MIM capacitor.
摘要:
Various embodiments of the present disclosure are directed towards a memory device. The memory device has a first transistor having a first source/drain and a second source/drain, where the first source/drain and the second source/drain are disposed in a semiconductor substrate. A dielectric structure is disposed over the semiconductor substrate. A first memory cell is disposed in the dielectric structure and over the semiconductor substrate, where the first memory cell has a first electrode and a second electrode, where the first electrode of the first memory cell is electrically coupled to the first source/drain of the first transistor. A second memory cell is disposed in the dielectric structure and over the semiconductor substrate, where the second memory cell has a first electrode and a second electrode, where the first electrode of the second memory cell is electrically coupled to the second source/drain of the first transistor.
摘要:
In some embodiments, the present disclosure relates to an integrated chip. The integrated chip includes a lower electrode structure disposed over one or more interconnects. The one or more interconnects are arranged within a lower inter-level dielectric (ILD) structure over a substrate. A barrier is arranged along a lower surface of the lower electrode structure. The barrier separates the lower electrode structure from the one or more interconnects. An amorphous initiation layer is over the lower electrode layer and a ferroelectric material is on the amorphous initiation layer. The ferroelectric material has a substantially uniform orthorhombic crystalline phase. An upper electrode is over the ferroelectric material.
摘要:
Some embodiments relate to a method for forming an integrated chip. The method includes forming a bottom electrode over a substrate. A data storage layer is formed on the bottom electrode. A diffusion barrier layer is formed over the data storage layer. The diffusion barrier layer has a first diffusion activation temperature. A top electrode is formed over the diffusion barrier layer. The top electrode has a second diffusion activation temperature less than the first diffusion activation temperature.
摘要:
The present disclosure relates to a semiconductor wafer structure including a semiconductor substrate and a plurality of semiconductor devices disposed along the semiconductor substrate. A dielectric stack including a plurality of dielectric layers is arranged over the semiconductor substrate. A conductive interconnect structure is within the dielectric stack. A seal ring layer is over the dielectric stack and laterally surrounds the dielectric stack along a first sidewall of the dielectric stack. The seal ring layer includes a first protrusion that extends into a first trench in the semiconductor substrate.