摘要:
A through-substrate via (TSV) structure that is immune to metal contamination due to a backside planarization process is provided. After forming a through-substrate via (TSV) trench, a diffusion barrier liner is conformally deposited on the sidewalls of the TSV trench. A dielectric liner is formed by depositing a dielectric material on vertical portions of the diffusion barrier liner. A metallic conductive via structure is formed by subsequently filling the TSV trench. Horizontal portions of the diffusion barrier liner are removed. The diffusion barrier liner protects the semiconductor material of the substrate during the backside planarization by blocking residual metallic material originating from the metallic conductive via structure from entering into the semiconductor material of the substrate, thereby protecting the semiconductor devices within the substrate from metallic contamination.
摘要:
A method for fabricating through-silicon vias (TSVs) for semiconductor devices is provided. Specifically, the method involves utilizing copper contact pads in a back-end-of-line wiring level, wherein the copper contact pads act as cathodes for performing an electroplating technique to fill TSVs with plated-conductive material (e.g., copper) from an electroplating solution. Moreover, the method provides a way to fill high aspect ratio TSVs with minimal additional semiconductor fabrication process steps, which can increase the silicon area that is available for forming additional electronic components on integrated circuits.
摘要:
The embodiments provide a method for reducing electromigration in a circuit containing a through-silicon via (TSV) and the resulting novel structure for the TSV. A TSV is formed through a semiconductor substrate. A first end of the TSV connects to a first metallization layer on a device side of the semiconductor substrate. A second end of the TSV connects to a second metallization layer on a grind side of the semiconductor substrate. A first flat edge is created on the first end of the TSV at the intersection of the first end of the TSV and the first metallization layer. A second flat edge is created on the second end of the TSV at the intersection of the second end of the TSV and the second metallization layer. On top of the first end a metal contact grid is placed, having less than eighty percent metal coverage.
摘要:
Disclosed is a process of making a semiconductor device wherein an insulation layer has a copper plug in contact with the last wiring layer of the device. There may also be a barrier layer separating the copper plug from the insulation layer. There may also be a cap layer over the copper plug to protect it from oxidation. There may also be a dielectric layer over the cap layer.
摘要:
A line trough and a via cavity are formed within a dielectric layer comprising a fluorosilicate glass (FSG) layer. A fluorine depleted adhesion layer is formed within the line trough and the via cavity either by a plasma treatment that removes fluorine from exposed surfaces of the FSG layer, or by deposition of a substantially fluorine-free dielectric layer. Metal is deposited within the line trough and the via cavity to form a metal line and a metal via. The fluorine depleted adhesion layer provides enhanced adhesion to the metal line compared with prior art structures in which a metal line directly contacts a FSG layer. The enhanced adhesion of metal with an underlying dielectric layer provides higher resistance to delamination for a semiconductor package employing lead-free C4 balls on a metal interconnect structure.
摘要:
A first metallic diffusion barrier layer is formed on a last level metal plate exposed in an opening of a passivation layer. Optionally, a metallic adhesion promotion layer is formed on the first metallic diffusion barrier layer. An elemental metal conductive layer is formed on the metallic adhesion promotion layer, which provides a highly conductive structure that distributes current uniformly due to the higher electrical conductivity of the material than the layers above or below. A stack of the second metallic diffusion barrier layer and a wetting promotion layer is formed, on which a C4 ball is bonded. The elemental metal conductive layer distributes the current uniformly within the underbump metallurgy structure, which induces a more uniform current distribution in the C4 ball and enhanced electromigration resistance of the C4 ball.
摘要:
A method includes patterning a photoresist layer on a structure to define an opening and expose a first planar area on a substrate layer, etching the exposed planar area to form a cavity having a first depth in the structure, removing a second portion of the photoresist to expose a second planar area on the substrate layer, forming a doped portion in the second planar area, and etching the cavity to expose a first conductor in the structure and the doped portion to expose a second conductor in the structure.
摘要:
A through-silicon via (TSV) structure forming a unique coaxial or triaxial interconnect within the silicon substrate. The TSV structure is provided with two or more independent electrical conductors insulated from another and from the substrate. The electrical conductors can be connected to different voltages or ground, making it possible to operate the TSV structure as a coaxial or triaxial device. Multiple layers using various insulator materials can be used as insulator, wherein the layers are selected based on dielectric properties, fill properties, interfacial adhesion, CTE match, and the like. The TSV structure overcomes defects in the outer insulation layer that may lead to leakage. A method of fabricating such a TSV structure is also described.
摘要:
A method of assembling a microelectronic flip-chip arrangement includes attaching a chip having a defined length to a supporting substrate, wherein the chip forms a chip shadow line of the defined length on the supporting substrate, creating a first non-wettable zone on an outer portion of the bottom surface of the chip, creating a second non-wettable zone on a portion of the supporting substrate outside the chip shadow line, underfilling the chip and forming a fillet, wherein the fillet does not extend beyond the chip shadow line, and hardening the underfill including the fillet.
摘要:
Disclosed are embodiments of a far back end of the line solder connector and a method of forming the connector that eliminates the use aluminum, protects the integrity of the ball limiting metallurgy (BLM) layers and promotes adhesion of the BLM layers by incorporating a thin conformal conductive liner into the solder connector structure. This conductive liner coats the top of the via filling in any divots in order to create a uniform surface for BLM deposition and to, thereby, protect the integrity of the BLM layers. The liner further coats the dielectric sidewalls of the well in which the BLM layers are formed in order to enhance adhesion of the BLM layers to the well.