摘要:
Provided are improved semiconductor memory devices and method for manufacturing such semiconductor memory devices. A method may incorporate the formation of silicide regions in a semiconductor. The method may allow for a semiconductor with a silicide layer with improved resistance and reduced silicide bridge formation.
摘要:
The present disclosure is related to semiconductor technologies and discloses a semiconductor device and its method of making. In the present disclosure, a transistor's source and drain are led out by forming vias or contact holes in an insulator layer covering the transistor and at metal silicide contact regions corresponding to the source and drain, and by filling the vias with metal-semiconductor compound. Because the metal-semiconductor compound has relatively low resistivity, the resistance of the material in the vias can be minimized. Also, because the material used to fill the vias and the material forming the source/drain contact regions are both metal-semiconductor compound, contact resistance between the material filling the vias and the source/drain contact regions can be minimized. Furthermore, because the material filling the vias is metal-semiconductor compound, the conducting material in the vias and dielectric material in the insulator layer can form good interface and have good adhesion properties, and the conducting material would not cause structural damage in the dielectric material. Thus, there is no need to form a barrier layer between the insulator layer and the material filling the vias.
摘要:
Methods are provided for fabricating multi-layer semiconductor structures. The methods include, for example: providing a first layer and a second layer over a substrate, the first layer including a first metal and the second layer including a second metal, where the second layer is disposed over the first layer and the first metal and second metal are different metals; and annealing the first layer, the second layer, and the substrate to react at least a portion of the first metal of the first layer to form a first reacted layer and at least a portion of the second metal of the second layer to form a second reacted layer, where at least one of the first reacted layer or the second reacted layer includes at least one of a first metal silicide of the first metal or a second metal silicide of the second metal.
摘要:
Methods and associated structures of forming a microelectronic device are described. Those methods may include forming a structure comprising a first contact metal disposed on a source/drain contact of a substrate, and a second contact metal disposed on a top surface of the first contact metal, wherein the second contact metal is disposed within an IID disposed on a top surface of a metal gate disposed on the substrate.
摘要:
This non-volatile semiconductor memory device includes a memory cell array including NAND cell units formed in a first direction vertical to a surface of a semiconductor substrate. A local source line is electrically coupled to one end of the NAND cell unit formed on the surface of the substrate. The memory cell array includes: a laminated body where plural conductive films, which are to be control gate lines of memory cells or selection gate lines of selection transistors, are laminated sandwiching interlayer insulating films; a semiconductor layer that extends in the first direction; and an electric charge accumulating layer sandwiched between: the semiconductor layer and the conductive film. The local source line includes a silicide layer. The electric charge accumulating layer is continuously formed from the memory cell array to cover a peripheral area of the silicide layer.
摘要:
Methods of fabricating a semiconductor device may include forming guide patterns exposing base patterns, forming first nanowires on the base patterns by performing a first nanowire growth process, forming a first molding insulating layer between the first nanowires, forming holes exposing surfaces of the base patterns by removing the nanowires, and forming first electrodes including a conductive material in the holes.
摘要:
One method disclosed herein includes, among other things, a method of forming a contact structure to a source/drain region of a transistor device. The transistor device includes a gate structure and a gate cap layer positioned above the gate structure. The method includes forming an extended-height epi contact structure that is conductively coupled to the source/drain region. The extended-height epi contact structure includes an upper surface that is positioned at a height level that is above a height level of an upper surface of the gate cap layer. The method further includes performing an etching process to trim at least a lateral width of a portion of the extended-height epi contact structure, and, after performing the etching process, forming a metal silicide material on at least a portion of the trimmed extended-height epi contact structure and forming a conductive contact on the metal silicide material.
摘要:
Metallic layers can be selectively deposited on one surface of a substrate relative to a second surface of the substrate. In some embodiments, the metallic layers are selectively deposited on copper instead of insulating or dielectric materials. In some embodiments, a first precursor forms a layer on the first surface and is subsequently reacted or converted to form a metallic layer. The deposition temperature may be selected such that a selectivity of above about 50% or even about 90% is achieved.
摘要:
A silicon carbide semiconductor device includes: a silicon carbide layer, a reaction layer which is in contact with the silicon carbide layer, a conductive oxidation layer which is in contact with the reaction layer, and an electrode layer which is formed over the reaction layer with the conductive oxidation layer interposed therebetween. A thickness of the conductive oxidation layer falls within a range of 0.3 nm to 2.25 nm.
摘要:
A memory device and a method of making a memory device that includes a stack of alternating layers of a first material and a second material different from the first material over a substrate, where the layers of the second material form a plurality of conductive control gate electrodes. A plurality of NAND memory strings extend through the stack, where each NAND memory string includes a semiconductor channel which contains at least a first portion which extends substantially perpendicular to a major surface of the substrate and at least one memory film located between the semiconductor channel and the plurality of conductive control gate electrodes. A source line including a metal silicide material extends through the stack.