摘要:
ALKYLAROMATIC HYDROCARBONS ARE DISPROPORTIONATED IN THE PRESENCE OF A COMPOSITE CATALYST COMPOSED OF A HYDROGEN MORDENITE AND A GROUP I-B METAL. THE COMPOSITE CATALYST MAY ADDITIONALLY CONTAIN A GROUP VI-B METAL.
摘要:
To provide a structured catalyst for catalytic cracking or hydrodesulfurization that suppresses decline in catalytic activity, achieves efficient catalytic cracking, and allows simple and stable obtaining of a substance to be modified. The structured catalyst for catalytic cracking or hydrodesulfurization (1) includes a support (10) of a porous structure composed of a zeolite-type compound and at least one type of metal oxide nanoparticles (20) present in the support (10), in which the support (10) has channels (11) that connect with each other, the metal oxide nanoparticles (20) are present at least in the channels (11) of the support (10), and the metal oxide nanoparticles (20) are composed of a material containing any one or two more of the oxides of Fe, Al, Zn, Zr, Cu, Co, Ni, Ce, Nb, Ti, Mo, V, Cr, Pd, and Ru.
摘要:
A catalyst for the carbonylation of dimethyl ether to methyl acetate. The catalyst comprises a zeolite, such as a mordenite zeolite, at least one Group IB metal, such as copper, and/or at least one Group VIII metal, such as iron, and at least one Group IIB metal, such as zinc. Such a catalyst with combined metals provides enhanced catalytic activity, improved stability, and improved selectivity to methyl acetate, and does not require a halogen promoter, as compared to a metal-free or copper only zeolite.
摘要:
A method of making a heat generating catalyst for hydrocarbon cracking. The method includes providing at least one mordenite framework-inverted (MFI) zeolite having a Si/Al molar ratio of 15 or greater and providing at least one metal oxide precursor. Further, the at least one metal oxide precursor is dispersed within a microstructure of the MFI zeolite catalyst. The method additionally includes calcining the heat generating material with the at least one metal oxide precursor dispersed within the microstructure of the MFI zeolite catalyst to form at least one metal oxide in situ. The heat generating catalyst includes at least one MFI zeolite and at least one metal oxide in a ratio between 50:50 and 95:5. Additionally, an associated method of using the heat generating catalyst in a hydrocarbon cracking process is provided.
摘要:
A method of making a heat generating catalyst for hydrocarbon cracking. The method includes providing at least one mordenite framework-inverted (MFI) zeolite having a Si/Al molar ratio of 15 or greater and providing at least one metal oxide precursor. Further, the at least one metal oxide precursor is dispersed within a microstructure of the MFI zeolite catalyst. The method additionally includes calcining the heat generating material with the at least one metal oxide precursor dispersed within the microstructure of the MFI zeolite catalyst to form at least one metal oxide in situ. The heat generating catalyst includes at least one MFI zeolite and at least one metal oxide in a ratio between 50:50 and 95:5. Additionally, an associated method of using the heat generating catalyst in a hydrocarbon cracking process is provided.
摘要:
Described is related to a nano-structured composite absorber for air detoxing and deodoring at ambient temperature to prevent harmful chemicals in the air from damaging human health. The nano-structured composite absorber consists of nano-porous carbon, zeolites with nano-sized pores and at least 1 other component chosen from nano-porous rare earth oxides and nano-sized catalysts. The synergetic action of those nano-structured components can effectively remove toxic chemicals including, but not limited to formaldehyde, benzene, toluene, xylene, propene, butadiene, acetone, carbon monoxide, nitric oxide, nitrogen dioxide, sulfur dioxide, hydrogen sulfide, ammonia, alcohols, chlorine, mercaptans, as well as malodors, such cigarette smoke, net/fish/poultry odors and bathroom/toilet smells.
摘要:
The present invention relates to a method for improved removal of cations, preferably alkaline earth metals, in particular calcium and barium, from aqueous solutions using chelating resins having aminomethylphosphonic acid groups and iminodimethylphosphonic acid groups having high dynamic absorption capacity for cations at a low residual content of the cations and high regeneration efficiency, and a markedly lengthened loading duration of the chelating resin, to the chelating exchangers themselves, and also to uses thereof.
摘要:
The presently disclosed and claimed inventive concept(s) generally relates to a solid catalyst component comprising a zeolite with a modifier and at least one Group VIII meal alloyed with at least one transition metal. The presently disclosed and claimed inventive concept(s) further relates to a method of making the solid catalyst component and a process of converting mixed waste plastics into low molecular weight organic compounds using the solid catalyst component.
摘要:
A cracking catalyst, which contains alumina, phosphorus and molecular sieve, with or without clay, wherein said alumina is η-alumina or a mixture of η-alumina and χ-alumina and/or γ-alumina, and wherein the catalyst contains, on the basis of the total amount of the catalyst, 0.5-50 wt % of η-alumina, 0-50 wt % of χ-alumina and/or γ-alumina, 10-70 wt % of molecular sieve, 0-75 wt % of clay, and 0.1-8 wt % of phosphorus, measured as P2O5. The catalyst not only has higher cracking activity and higher cracking ability for cracking heavy oil, but also improves significantly quality and yield of gasoline, LCO and LPG in cracking products.