Abstract:
The embodiments described provide apparatus and methods for bonding wafers to carriers with the surface contours of plates facing the substrates or carriers are modified either by re-shaping, by using height adjusters, by adding shim(s), or by zoned temperature control. The modified surface contours of such plates compensate the effects that may cause the non-planarity of bonded substrates.
Abstract:
A method includes providing an interposer wafer including a substrate, and a plurality of through-substrate vias (TSVs) extending from a front surface of the substrate into the substrate. A plurality of dies is bonded onto a front surface of the interposer wafer. After the step of bonding the plurality of dies, a grinding is performed on a backside of the substrate to expose the plurality of TSVs. A plurality of metal bumps is formed on a backside of the interposer wafer and electrically coupled to the plurality of TSVs.
Abstract:
A method includes bonding a wafer on a carrier through an adhesive, and performing a thinning process on the wafer. After the step of performing the thinning process, a portion of the adhesive not covered by the wafer is removed, while the portion of the adhesive covered by the wafer is not removed.
Abstract:
In accordance with an embodiment, a structure comprises a substrate having a first area and a second area; a through substrate via (TSV) in the substrate penetrating the first area of the substrate; an isolation layer over the second area of the substrate, the isolation layer having a recess; and a conductive material in the recess of the isolation layer, the isolation layer being disposed between the conductive material and the substrate in the recess.
Abstract:
A method of forming an integrated circuit structure includes forming a first insulation region and a second insulation region in a semiconductor substrate and facing each other; and forming an epitaxial semiconductor region having a reversed T-shape. The epitaxial semiconductor region includes a horizontal plate including a bottom portion between and adjoining the first insulation region and the second insulation region, and a fin over and adjoining the horizontal plate. The bottom of the horizontal plate contacts the semiconductor substrate. The method further includes forming a gate dielectric on a top surface and at least top portions of sidewalls of the fin; and forming a gate electrode over the gate dielectric.
Abstract:
Computer-aided systems and methods are provided for determining the skin composition of a specific user according to Traditional Chinese Medicinal (TCM) principles by statistically analyzing biological and/or psychological information collected from such user, such as age, gender, bodily sensation, skin condition and complexion, sleep pattern, dietary habits, energy level, stress level, physical fitness and emotional wellness, so as to classify the skin composition of the user according to TCM principles but without employing a TCM practitioner. Preferably, the skin composition classification is indicative of Yin-Yang balance of the skin of the user or the lack thereof. The present systems and methods may further recommend to the user one or more topical skin care regimens and/or ingestible skin benefit products suitable for the skin composition of the specific user.
Abstract:
A high voltage gain power converter includes: a main switch element; an assistant switch element; a first inductive element, a first switch element, and a first capacitive element; and a second inductive element, a second switch element, and a second capacitive element. The first inductive element is connected between an input node and first switch element. The first capacitive element, connected between the first switch element and ground, provides a first boost output voltage. The second inductive element is connected between the main switch element and first capacitive element. The second switch element is connected to a common node of the second inductive element and main switch element. The second capacitive element, connecting the second switch element to a first node, provides a second boost output voltage. The assistant switch element is connected between the first inductive element and common node of the second inductive element and main switch element.
Abstract:
A semiconductor device and a method of manufacturing are provided. A dielectric layer is formed over a substrate, and a first silicon-containing layer, undoped, is formed over the dielectric layer. Atomic-layer doping is used to dope the undoped silicon-containing layer. A second silicon-containing layer is formed over first silicon-containing layer. The process may be expanded to include forming a PMOS and NMOS device on the same wafer. For example, the first silicon-containing layer may be thinned in the PMOS region prior to the atomic-layer doping. In the NMOS region, the doped portion of the first silicon-containing layer is removed such that the remaining portion of the first silicon-containing layer in the NMOS is undoped. Thereafter, another atomic-layer doping process may be used to dope the first silicon-containing layer in the NMOS region to a different conductivity type. A third silicon-containing layer may be formed doped to the respective conductivity type.
Abstract:
A semiconductor device includes a substrate formed of a first semiconductor material; two insulators on the substrate; and a semiconductor region having a portion between the two insulators and over the substrate. The semiconductor region has a bottom surface contacting the substrate and having sloped sidewalls. The semiconductor region is formed of a second semiconductor material different from the first semiconductor material.
Abstract:
This invention relates generally to the field of moiety or molecule analysis, isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a substrate; and b) a photorecognizable coding pattern on said substrate. Preferably, the microdevice does not comprise an anodized metal surface layer. Methods and kits for isolating, detecting and manipulating moieties, and synthesizing libraries using the microdevices are also provided. The invention further provides two-dimensional optical encoders and uses thereof. In certain embodiments, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.