摘要:
A flip chip mounting process includes the steps of supplying a resin (13) containing solder powder and a convection additive (12) onto a wiring substrate (10) having a plurality of electrode terminals (11), then bringing a semiconductor chip (20) having a plurality of connecting terminals (11) into contact with a surface of the supplied resin (13), and then heating the wiring substrate (10) to a temperature that enables the solder powder to melt. The heating step is carried out at a temperature that is higher than the boiling point of the convection additive (12) to allow the boiling convection additive (12) to move within the resin (12). During this heating step, the melted solder powder is allowed to self-assemble into the region between each electrode terminal (11) of the wiring substrate (10) and each connecting terminal (21) of the semiconductor chip to form an electrical connection between each electrode terminal (11) and each connecting terminal (21). Finally, the resin is cured so as to secure the semiconductor chip (20) to the wiring substrate (10).
摘要:
A flip chip mounting process includes the steps of supplying a resin (13) containing solder powder and a convection additive (12) onto a wiring substrate (10) having a plurality of electrode terminals (11), then bringing a semiconductor chip (20) having a plurality of connecting terminals (11) into contact with a surface of the supplied resin (13), and then heating the wiring substrate (10) to a temperature that enables the solder powder to melt. The heating step is carried out at a temperature that is higher than the boiling point of the convection additive (12) to allow the boiling convection additive (12) to move within the resin (12). During this heating step, the melted solder powder is allowed to self-assemble into the region between each electrode terminal (11) of the wiring substrate (10) and each connecting terminal (21) of the semiconductor chip to form an electrical connection between each electrode terminal (11) and each connecting terminal (21). Finally, the resin is cured so as to secure the semiconductor chip (20) to the wiring substrate (10).
摘要:
The present invention provides a conductive resin composition for connecting electrodes electrically, in which metal particles are dispersed in a flowing medium, wherein the flowing medium includes a first flowing medium that has relatively high wettability with the metal particles and a second flowing medium that has relatively low wettability with the metal particles, and the first flowing medium and the second flowing medium are dispersed in a state of being incompatible with each other. Thereby, a flip chip packaging method that can be applied to flip chip packaging of LSI and has high productivity and high reliability is provided.
摘要:
A flip chip mounting method includes holding a circuit board (213) and a semiconductor chip (206), aligning the circuit board (213) with the semiconductor chip (206) while holding them with a predetermined gap therebetween, heating the circuit board (213) or the semiconductor chip (206) to a temperature at which solder powder in a solder resin composition (216) formed of solder powder (214) and a resin (215) is melted, supplying the solder resin composition (216) by a capillary phenomenon, and curing the resin (215), wherein the melted solder powder (214) in the solder resin composition (216) is moved through the predetermined gap across which the circuit board (213) and the semiconductor chip (206) are held, and self-assembled and grown, whereby the connection terminals (211) and the electrode terminals (207) are connected to each other electrically. According to this configuration, a flip chip mounting method having high productivity and reliability, which enables a next generation semiconductor chip to be mounted on a circuit board, a mounted body thereof, and a mounting apparatus thereof are provided.
摘要:
The present invention provides a conductive resin composition for connecting electrodes electrically, in which metal particles are dispersed in a flowing medium, wherein the flowing medium includes a first flowing medium that has relatively high wettability with the metal particles and a second flowing medium that has relatively low wettability with the metal particles, and the first flowing medium and the second flowing medium are dispersed in a state of being incompatible with each other. Thereby, a flip chip packaging method that can be applied to flip chip packaging of LSI and has high productivity and high reliability is provided.
摘要:
A flip chip mounting method which is applicable to the flip chip mounting of a next-generation LSI and high in productivity and reliability as well as a method for connecting substrates are provided. A circuit board 10 having a plurality of connecting terminals 11 and a semiconductor chip 20 having a plurality of electrode terminals 21 are disposed in mutually facing relation and a resin 13 containing conductive particles 12 and a gas bubble generating agent is supplied into the space therebetween. In this state, the resin 13 is heated to generate gas bubbles 30 from the gas bubble generating agent contained in the resin 13. The resin 13 is pushed toward the outside of the generated gas bubbles 30 by the growth thereof. The resin 13 pushed to the outside is self-assembled in the form of columns between the respective terminals of the circuit board 10 and the semiconductor chip 20. In this state, by pressing the semiconductor chip 20 against the circuit board 10, the conductive particles 12 contained in the resin 13 self-assembled between the facing terminals are brought into contact with each other to provide electrical connection between the terminals.
摘要:
A flip chip mounting method which is applicable to the flip chip mounting of a next-generation LSI and high in productivity and reliability as well as a bump forming method are provided. After a resin 14 containing a solder powder 16 and a gas bubble generating agent is supplied to a space between a circuit board 21 having a plurality of connecting terminals 11 and a semiconductor chip 20 having a plurality of electrode terminals 12, the resin 14 is heated to generate gas bubbles 30 from the gas bubble generating agent contained in the resin 14. The resin 14 is pushed toward the outside of the generated gas bubbles 30 by the growth thereof and self-assembled between the connecting terminals 11 and the electrode terminals 12. By further heating the resin 14 and melting the solder powder 16 contained in the resin 14 self-assembled between the terminals, connectors 22 are formed between the terminals to complete a flip chip mounting body.
摘要:
A connection structure (package 10) has a first plate body 101 and a second plate body; in the first plate body 101, a wiring pattern having a plurality of connection terminals 102 is formed, and the second plate body has at least two connection terminals (electrode terminals 104) arranged facing the connection terminals of the first plate body 101. The connection terminals of the first and second plate bodies are connection terminals formed as projections on the surfaces of the first and second plate bodies. A conductive substance 108 is accumulated to cover at least a part of each side face of the connection terminals opposed to each other of the first and second plate bodies, and the connection terminals thus opposed are connected to each other via the conductive substance. The package thus formed is ready for a high-pin-count, narrow-pitch configuration of a next-generation semiconductor chip, and exhibits excellent productivity and reliability. The present invention is advantageous for such a package, for a connection structure applicable to the production of the package, and for a method of producing the connection structure.
摘要:
A flip chip mounting method which is applicable to the flip chip mounting of a next-generation LSI and high in productivity and reliability as well as a method for connecting substrates are provided. A circuit board 10 having a plurality of connecting terminals 11 and a semiconductor chip 20 having a plurality of electrode terminals 21 are disposed in mutually facing relation and a resin 13 containing conductive particles 12 and a gas bubble generating agent is supplied into the space therebetween. In this state, the resin 13 is heated to generate gas bubbles 30 from the gas bubble generating agent contained in the resin 13. The resin 13 is pushed toward the outside of the generated gas bubbles 30 by the growth thereof. The resin 13 pushed to the outside is self-assembled in the form of columns between the respective terminals of the circuit board 10 and the semiconductor chip 20. In this state, by pressing the semiconductor chip 20 against the circuit board 10, the conductive particles 12 contained in the resin 13 self-assembled between the facing terminals are brought into contact with each other to provide electrical connection between the terminals.
摘要:
A semiconductor device having a semiconductor elements formed with higher density is provided. Furthermore an image display device using the semiconductor device is also provided.A semiconductor device comprising a resin film that has a through hole that penetrates from one surface to the other surface thereof, a source electrode disposed along the inner wall of the through hole, a drain electrode disposed along the inner wall of the through hole, a gate electrode disposed on the other surface of the resin film opposing the through hole, an insulating layer disposed on the gate electrode at the bottom of the through hole and an organic semiconductor disposed in the through hole so as to contact the source electrode and the drain electrode, wherein the organic semiconductor makes contact with at least a part of the insulating layer at the bottom of the through hole so that a channel is formed in the organic semiconductor in the vicinity of the insulating layer that is in contact therewith.