Abstract:
In the present invention, metal silicide grains form an interlinked structure of a metal silicide phase, and Si grains which form a Si phase are discontinuously dispersed between the metal silicide phase to provide a sputtering target having a high density two-phased structure and having an aluminum content of 1 ppm or less. Because of the high density and high strength of the target, the generation of particles from the target during sputtering is reduced, and due to the reduced carbon content of the target, the mixing of carbon into the thin film during sputtering can be prevented.
Abstract:
Disclosed is a sintered ceramic product comprising (a) 20-98 percent by weight silicon nitride, (b) 1-80 percent by weight of a silicide of iron, cobalt or nickel and (c) 0.02-20 parts by weight of at least one oxide, nitride, or silicate of an element of IUPAC groups 2, 3, 4, 13 or the lanthanide series. A method for making such a product is also disclosed.
Abstract:
Coatings of metals, metal alloys, metal carbides, nitrides, borides, silicides and phosphides are provided. A precursor having organic ligands bonded to one or more metal atoms, such precursor having the element X also bonded directly or indirectly to the metal or metals, is pyrolyzed on a substrate surface to give a coating of M.sub.a X.sub.b. M represents a transition, lanthanide or actinide metal or tin, X represents C, N, B, Si, or P, and a and b represent the atomic proportions of M and X. The subscript b may be zero if an alloy or pure metal is to be prepared. The product M.sub.a X.sub.b can be prepared by relatively low temperature pyrolysis and the precursor can be used as a solution or a low melting solid.
Abstract:
A type of composite material where the matrix material and additive are held together by covalently or non-covalently bound ligands is described. A particularly useful composite material covered by the present invention is a carbon nanotube-reinforced composite material where the matrix consists of a polymer, covalently attached to a linker, where said linker is non-covalently attached to the carbon nanotube. Methods for the preparation of such composite materials are provided.
Abstract:
Provided herein are a thermoelectric material and a method for preparing the same, wherein the thermoelectric material has excellent thermoelectric performance and high mechanical properties (in particular, fracture toughness), and thus, when the thermoelectric material is applied to a thermoelectric module, the thermoelectric module has excellent performance and efficiency and a long lifespan.
Abstract:
Methods, processes, systems, devices and apparatus are provided for additive manufacture resulting in the 3D printing of novel ceramic composites. Additive manufacture or 3D printing of bulk ceramic and ceramic composite components occurs at considerably lower temperatures and shorter manufacturing intervals than the current state of the art. The methods, processes, systems, devices and apparatus and selection of precursor resins produce ceramic and ceramic composite material systems which have not been produced before by 3D printing.
Abstract:
A compound is generally provided that has the formula: Ln3-xBxM5-yByO12, where Ln comprises Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, or a mixture thereof; x is 0 to about 1.5; M comprises Ga, In, Al, Fe, or a combination thereof; y is 0 to about 2.5; and x+y is greater than 0. A composition is also provided that includes a silicon-containing material (e.g., silicon metal and/or a silicide) and the boron-doped refractory compound having the formula described above, such as about 0.001% to about 85% by volume of the boron-doped refractory compound.
Abstract:
The disclosure relates generally to recession resistant gas turbine engine articles that comprise a silicon containing substrate, and related coatings and methods. The present disclosure is directed, inter alia, to an engine article comprising a silicon substrate which is coated with a chemically stable porous oxide layer. The present disclosure also relates to articles comprising a substrate and a bond coat on top comprising a two phase layer of interconnected silicon and interconnected oxide, followed by a layer of silicon. The present disclosure further relates to a recession resistant article comprising an oxide in a silicon containing substrate, such that components of the silicon containing substrate is interconnected with oxides dispersed in the substrate and form the bulk of the recession resistant silicon containing article.
Abstract:
The present disclosure relates to methods and systems for reducing silica recession of silicon-containing ceramics or silicon-containing ceramic composites, particularly those exposed to a combustion gas or to combustion gas environments, including those exposed to high temperature combustion gas environments. The methods and systems involve silicon-doping of compressed air and/or removal of moisture from compressed air prior to co-mingling the treated compressed air with the combustion gas to which the silicon-containing ceramics or silicon-containing ceramic composites are exposed.
Abstract:
A transpiration-cooled article includes a body wall that has first and second opposed surfaces. The first surface is adjacent a passage that is configured to receive a pressurized cooling fluid. At least a portion of the body wall includes a nanocellular foam through which the pressurized cooling fluid from the passage can flow to the second surface. The article can be an airfoil that includes an airfoil body that has an internal passage and an outer gas-path surface. At least a portion of the airfoil body includes a nanocellular foam through which cooling fluid from the internal passage can flow to the gas-path surface.