Abstract:
A composition for a base of a directed self-assembling film includes a compound including an oxo acid group, and a solvent. The compound is preferably represented by formula (1). A represents an organic group having 10 or more carbon atoms and having a valency of n. B represents an oxo acid group. n is an integer of 1 to 200. In a case where n is 2 or greater, a plurality of Bs are identical or different. AB)n (1)
Abstract:
Disclosed therein are an optical film and a display device comprising the same, where the optical film comprises a first optically anisotropic layer including a liquid crystal compound and a second optically anisotropic layer including a photoreactive polymer, thereby securing improved photoreaction rate and excellent liquid crystal alignment.
Abstract:
A dispersion having from one to sixty percent by weight of total dispersion of a solids component dispersed in an organic continuous phase is useful as a coating for substrates. The solids component contains 40-95 weight-percent of a polyolefin containing only carbon and hydrogen and that has a number average molecular weight that is greater than 400 gram per mole, 5-40 weight-percent of an amine salt of a functionalized polyolefin; and 0-20 weight-percent of optional additives, wherein weight-percent is based on total weight of solids and wherein the dispersed particles have an average particle size of less than 35 micrometers and the organic phase is a dispersion support medium for the polyolefin and amine salt of a functionalized polyolefin.
Abstract:
A method for preparing stably dispersed cellulose nanofibers comprises the following steps: 1) mixing cellulose and an organic solvent, the percentage of the cellulose being 1% to 15% in weight; 2) adding an esterification agent into the resultant mixture of step 1), the molar ratio of the esterification agent to the cellulose being from 1:0.1 to 4; and 3) physically breaking the resultant mixture of step 2) until a suspension liquid with stably dispersed cellulose nanofibers of 2-1000 nm in diameter and 10-100 μm in length is obtained, an esterification reaction of hydroxyl group(s) on the surface of cellulose fibers occurring at the time of the breaking. Also disclosed are dispersed cellulose nanofibers with improved compatibility to the matrix than the untreated cellulose and an improved strength of the composite materials.
Abstract:
The present invention relates to an aqueous epoxy resin composition which is able to contain a large amount of water because it uses an epoxy resin and a coagulant and thereby allows an emulsifier and water to be stably adsorbed and captured on tangled particle surfaces of the coagulant. The aqueous epoxy resin composition according to the present invention comprises a highly compatible formulation producing a good cross-linking bond in a curing reaction with a curing agent and hence it can effect functions including those of a coating agent, a primer agent, a mortar agent and an adhesive agent in a two-part formulation, and it entails a formulation using absolutely no volatile organic compounds in large amounts and hence it is environmentally-friendly and can also markedly reduce production costs.
Abstract:
Hydroxypolyamides, hydroxypolyamide products, and post-hydroxypolyamides are disclosed as gel forming agents. Hydroxypolyamides and post-hydroxypolyamides are prepared from known methods. Hydroxypolyamide products are produced from a modified polymerization procedure which utilizes strong base for deprotonation of ammonium salts from the esterification of stoichiometrically equivalent polyacid:polyamine salts. The hydroxypolyamide products are capable of gel formation at lower concentrations than hydroxypolyamides and post-hydroxypolyamides from the known methods of preparation, and are therefore superior gel forming agents.
Abstract:
The present invention refers a procedure for preparation of a reflective and oxide inhibiting coating consists of adding hard water, a series of compounds such as titanium dioxide, calcium hydroxide at 95%, an acrylic polymer, hydroxy methyl cellulose, sodium hexametaphosphate at 10% y monoethylen glycol, maintaining specific conditions of pH and viscosity during process. The resulting coating of this process, presents highly adhesive actions, as well as a high level of reflection to solar rays, which place it as a oxide inhibitor, that no require previous sealed when it is applied to steel and/or galvanize surfaces.
Abstract:
The present disclosure provides a dispersant obtained from the reaction of a styrene maleic anhydride and a polyether monoamine. The dispersant may be combined with a pesticide and water to form an aqueous agricultural composition.
Abstract:
The present invention concerns an aqueous dispersion comprising water and a mixture of:
A) an aqueous dispersion comprising water and a polyurethane polymer A-1) obtained by reacting at least the following components: (a) a polyisocyanate compound; (b) a polyol compound comprising: (c) an emulsifier; B) an aqueous dispersion other than A) comprising water and a polyurethane polymer B-1) obtained by reacting at least the following components: (i) a diisocyanate; (ii) at least one polyether polyol having a number average molecular weight (Mn) ranging from 500 to 10 000 g/mol; (iii) an amino compound having an amino functionality higher or equal to 1; (iv) a compound comprising at least one isocyanate-reactive group and at least one ionic or potentially ionic group; wherein said polyurethane B-1) is amorphous.
Abstract:
A resin producing method is a method of producing a resin with which an insulating structure formed on an outer peripheral portion of a conductor is impregnated. The resin producing method includes a dispersion liquid mixing step of mixing an epoxy resin and a dispersion liquid in which a nanofiller is dispersed in a reactive diluent that reduces a viscosity of the epoxy resin by reacting with the epoxy resin, and a curing agent mixing step of mixing a composition produced by the dispersion liquid mixing step, with a curing agent that cures the epoxy resin. The epoxy resin includes, for example, an alicyclic epoxy resin.