Abstract:
An inspection system including an optical system (optics) to direct light from an illumination source to a sample, and to direct light reflected/scattered from the sample to one or more image sensors. At least one image sensor of the system is formed on a semiconductor membrane including an epitaxial layer having opposing surfaces, with circuit elements formed on one surface of the epitaxial layer, and a pure boron layer on the other surface of the epitaxial layer. The image sensor may be fabricated using CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) technology. The image sensor may be a two-dimensional area sensor, or a one-dimensional array sensor. The image sensor can be included in an electron-bombarded image sensor and/or in an inspection system.
Abstract:
A dual-column-parallel image CCD sensor utilizes a dual-column-parallel readout circuit including two pairs of cross-connected transfer gates to alternately transfer pixel data (charges) from a pair of adjacent pixel columns to a shared output circuit at high speed with low noise. Charges transferred along the two adjacent pixel columns at a line clock rate are alternately passed by the transfer gates to a summing gate that is operated at twice the line clock rate to pass the image charges to the shared output circuit. A symmetrical Y-shaped diffusion is utilized in one embodiment to merge the image charges from the two pixel columns. A method of driving the dual-column-parallel CCD sensor with line clock synchronization is also described. A method of inspecting a sample using the dual-column-parallel CCD sensor is also described.
Abstract:
An inspection system and methods in which analog image data values (charges) captured by an image sensor are binned (combined) before or while being transmitted as output signals on the image sensor's output sensing nodes (floating diffusions), and in which an ADC is controlled to sequentially generate multiple corresponding digital image data values between each reset of the output sensing nodes. According to an output binning method, the image sensor is driven to sequentially transfer multiple charges onto the output sensing nodes between each reset, and the ADC is controlled to convert the incrementally increasing output signal after each charge is transferred onto the output sensing node. According to a multi-sampling method, multiple charges are vertically or horizontally binned (summed/combined) before being transferred onto the output sensing node, and the ADC samples each corresponding output signal multiple times. The output binning and multi-sampling methods may be combined.
Abstract:
Pixel aperture size adjustment in a linear sensor is achieved by applying more negative control voltages to central regions of the pixel's resistive control gate, and applying more positive control voltages to the gate's end portions. These control voltages cause the resistive control gate to generate an electric field that drives photoelectrons generated in a selected portion of the pixel's light sensitive region into a charge accumulation region for subsequent measurement, and drives photoelectrons generated in other portions of the pixel's light sensitive region away from the charge accumulation region for subsequent discard or simultaneous readout. A system utilizes optics to direct light received at different angles or locations from a sample into corresponding different portions of each pixel's light sensitive region. Multiple aperture control electrodes are selectively actuated to collect/measure light received from either narrow or wide ranges of angles or locations, thereby enabling rapid image data adjustment.
Abstract:
An image sensor for short-wavelength light and charged particles includes a semiconductor membrane, circuit elements formed on one surface of the semiconductor membrane, and a pure boron layer on the other surface of the semiconductor membrane. This image sensor has high efficiency and good stability even under continuous use at high flux for multiple years. The image sensor may be fabricated using CCD (charge coupled device) or CMOS (complementary metal oxide semiconductor) technology. The image sensor may be a two-dimensional area sensor, or a one-dimensional array sensor. The image sensor can be included in an electron-bombarded image sensor and/or in an inspection system.
Abstract:
A laser assembly for generating laser output light at an output wavelength of approximately 183 nm includes a fundamental laser, an optical parametric system (OPS), a fifth harmonic generator, and a frequency mixing module. The fundamental laser generates fundamental light at a fundamental frequency. The OPS generates a down-converted signal at a down-converted frequency. The fifth harmonic generator generates a fifth harmonic of the fundamental light. The frequency mixing module mixes the down-converted signal and the fifth harmonic to produce the laser output light at a frequency equal to a sum of the fifth harmonic frequency and the down-converted frequency. The OPS generates the down-converted signal by generating a down-converted seed signal at the down-converted frequency, and then mixing the down-converted seed signal with a portion of the fundamental light. At least one of the frequency mixing, frequency conversion or harmonic generation utilizes an annealed, deuterium-treated or hydrogen-treated CLBO crystal.
Abstract:
A wafer scanning system includes imaging collection optics to reduce the effective spot size. Smaller spot size decreases the number of photons scattered by the surface proportionally to the area of the spot. Air scatter is also reduced. TDI is used to produce a wafer image based on a plurality of image signals integrated over the direction of linear motion of the wafer. An illumination system floods the wafer with light, and the task of creating the spot is allocated to the imaging collection optics.
Abstract:
A repetition rate (pulse) multiplier includes one or more beam splitters and prisms forming one or more ring cavities with different optical path lengths that delay parts of the energy of each pulse. A series of input laser pulses circulate in the ring cavities and part of the energy of each pulse leaves the system after traversing the shorter cavity path, while another part of the energy leaves the system after traversing the longer cavity path, and/or a combination of both cavity paths. By proper choice of the ring cavity optical path length, the repetition rate of an output series of laser pulses can be made to be a multiple of the input repetition rate. The relative energies of the output pulses can be controlled by choosing the transmission and reflection coefficients of the beam splitters. Some embodiments generate a time-averaged output beam profile that is substantially flat in one dimension.
Abstract:
A pulse multiplier includes a beam splitter and one or more mirrors. The beam splitter receives a series of input laser pulses and directs part of the energy of each pulse into a ring cavity. After circulating around the ring cavity, part of the pulse energy leaves the ring cavity through the beam splitter and part of the energy is recirculated. By selecting the ring cavity optical path length, the repetition rate of an output series of laser pulses can be made to be a multiple of the input repetition rate. The relative energies of the output pulses can be controlled by choosing the transmission and reflection coefficients of the beam splitter. This pulse multiplier can inexpensively reduce the peak power per pulse while increasing the number of pulses per second with minimal total power loss.
Abstract:
Various metrology systems and methods are provided. One metrology system includes a light source configured to produce a diffraction-limited light beam, an apodizer configured to shape the light beam in the entrance pupil of illumination optics, and optical elements configured to direct the diffraction-limited light beam from the apodizer to an illumination spot on a grating target on a wafer and to collect scattered light from the grating target. The metrology system further includes a field stop and a detector configured to detect the scattered light that passes through the field stop. In addition, the metrology system includes a computer system configured to determine a characteristic of the grating target using output of the detector.