摘要:
A catalyst system comprising a combination of: 1) one or more catalyst compounds having at least one nitrogen linkage and at least one oxygen linkage to a transition metal; 2) a support comprising an organosilica material, which is a mesoporous organosilica material; and 3) an optional activator. Useful catalysts include ONNO-type transition metal catalysts, ONYO-Type transition metal catalysts, and/or oxadiazole transition metal catalysts. The organosilica material is a polymer of at least one monomer of Formula [z′OZ2 SiCH2]3(l), where Z1 represents a hydrogen atom, a C1-C4alkyl group, or a bond to a silicon atom of another monomer and Z2 represents a hydroxyl group, a C1-C4alkoxy group, a C1-C6alkyl group, or an oxygen atom bonded to a silicon atom of another monomer. This invention further relates to processes to polymerize olefins comprising contacting one or more olefins with the above catalyst system.
摘要:
According to one embodiment described in this disclosure, a process for producing propylene may comprise at least partially metathesizing a first stream comprising at least about 10 wt. % butene to form a metathesis-reaction product, at least partially cracking the metathesis-reaction product to form a cracking-reaction product comprising propylene, and at least partially separating propylene from the cracking-reaction product to form a product stream comprising at least about 80 wt. % propylene.
摘要:
A hydrocracking catalyst having a support of a composite of mesoporous materials, molecular sieves and alumina, is used in the last bed of a multi-bed system for treating heavy crude oils and residues and is designed to increase the production of intermediate distillates having boiling points in a temperature range of 204° C. to 538° C., decrease the production of the heavy fraction (>538° C.), and increase the production of gasoline fraction (
摘要:
A hydrocracking catalyst having a support of a composite of mesoporous materials, molecular sieves and alumina, is used in the last bed of a multi-bed system for treating heavy crude oils and residues and is designed to increase the production of intermediate distillates having boiling points in a temperature range of 204° C. to 538° C., decrease the production of the heavy fraction (>538° C.), and increase the production of gasoline fraction (
摘要:
Provided is a diesel particulate filter capable of removing soot from an exhaust gas while operating at low backpressure, the filter comprising (a) a wall-flow filter substrate having a mean pore size, an inlet side, an outlet side, and a porous interior between the inlet and outlet sides; and (b) a catalyst composition coated from the outlet side of the substrate, wherein the catalyst composition has a d50 particle size distribution, wherein the d50 particle size distribution is greater than or equal to the mean pore size divided by 4.9, and wherein the inlet side is substantially free of a catalyst coating.
摘要:
The present invention provides a method for directly producing lactide by subjecting lactic acid to a dehydration reaction in the presence of a catalyst comprising a tin compound, preferably, a tin (IV) compound, wherein lactide can be produced directly or by one step from lactic acid, without going through the step of producing or separating lactic acid oligomer. The method of the present invention has advantages of causing no loss of lactic acid, having a high conversion ratio to lactic acid and a high selectivity to optically pure lactide, and maintaining a long life time of the catalyst. Further, since lactic acid oligomer is not or hardly generated and the selectivity of meso-lactide is low, the method also has an advantage that the cost for removing or purifying this can be saved.
摘要:
The first object is to increase the life of a selective CO methanation catalyst, and the second object is to enhance the CO removal rate of a selective CO methanation catalyst to reduce the outlet CO concentration in a wide temperature range. Provided a selective CO methanation catalyst including a supported metal catalyst which selectively methanizes CO in a hydrogen-rich gas containing CO and CO2 and a coating layer which covers a surface of the supported metal catalyst, has many pores, and is configured to reduce a CO concentration on the surface of the supported metal catalyst.
摘要:
A mesoporous composite titanium oxide, which is composed of a mesoporous titanium oxide, the outside surface and the wall of pores of the mesoporous titanium oxide are modified by inorganic matters; inorganic matter contains at least one element selected from carbon, silicon, sulphur, phosphorus and selenium in an amount of 0.01%-25%, on amount of the element mass, of the mass of said mesoporous composite titanium oxide material; at least one mean pore size of pore distribution of the mesoporous compound titanium oxide material is 3-15 nm, the specific surface area is 50-250 m2/g, and the pore volume is 0.05-0.4 cm3/g. As a catalyst carrier, the rate of conversion of the hydrodesulfurization reaction of the material reaches as high as 98 percent, and as a lithium ion battery cathode material, the specific capacity of the lithium ion battery cathode material reaches as high as 220 mAh/g.
摘要:
A method of producing olefins and aromatic compounds from a feedstock is accomplished by introducing a hydrocarbon feedstock and a catalyst composition within a reactor. At least a portion of the reactor is at a reactor temperature of from 470° C. to 730° C. The catalyst composition is comprised of a fluidized catalytic cracking (FCC) catalyst and a ZSM-5 zeolite catalyst, wherein the amount of ZSM-5 zeolite catalyst makes up from greater than 0 wt. % of the total weight of the FCC catalyst and the ZSM-5 zeolite catalyst. At least a portion of the feedstock is converted to products of at least one of olefins and aromatic compounds within the reactor, with at least some of the products being contained in a liquid product stream. At least a portion of the liquid product stream is directed to different downstream processes to increase production of at least one of olefins and aromatic compounds.