Abstract:
Techniques for controlling a charged particle beam are disclosed. In one particular exemplary embodiment, the techniques may be realized as a charged particle acceleration/deceleration system. The charged particle acceleration/deceleration system may comprise an accelerator column, which may comprise a plurality of electrodes. The plurality of electrodes may have apertures through which a charged particle beam may pass. The charged particle acceleration/deceleration system may also comprise a voltage grading system. The voltage grading system may comprise a first fluid reservoir and a first fluid circuit. The first fluid circuit may have conductive connectors connecting to at least one of the plurality of electrodes. The voltage grading system may further comprise fluid in the first fluid circuit. The fluid may have an electrical resistance.
Abstract:
An apparatus and method for providing a low energy, high current ion beam for ion implantation applications are disclosed. The apparatus includes a mass analysis magnet mounted in a passageway along the path of an ion beam, a power source adapted to provide an electric field in the passageway, and a magnetic device adapted to provide a multi-cusped magnetic field in the passageway, which may include a plurality of magnets mounted along at least a portion of the passageway. The power source and the magnets may cooperatively interact to provide an electron cyclotron resonance (ECR) condition along at least a portion of the passageway. The multi-cusped magnetic field may be superimposed on the dipole field at a specified field strength in a region of the mass analyzer passageway to interact with an electric field of a known RF or microwave frequency for a given low energy ion beam. The invention further comprises a mass analyzer waveguide adapted to couple the electric field to the beam plasma consistently along the length of the mass analyzer passageway to thereby improve the creation of the ECR condition. The invention thus provides enhancement of beam plasma within a mass analyzer dipole magnetic field for low energy ion beams without the introduction of externally generated plasma. The invention further includes a method of providing ion beam containment in a low energy ion implantation system, as well as an ion implantation system.
Abstract:
A hot wedge, automatic seam welder is disclosed. The welder is comprised of a chassis having a base plate, a motor housing and a support arm extending from the motor housing. An S-shaped guide for guiding opposing sheets of material is between the base plate and the motor housing. Disposed downstream from the motor housing, depending from the support arm, is vertically-movable suspension for a driven upper pressure roller which is occludable with a driven lower pressure roller on the base plate. Also depending from the support arm is vertically-movable and adjustable suspension for the hot wedge. A horn-shaped shroud for guiding material over and under the wedge, and for shrouding the wedge when in its disengaged mode, is disposed upstream from the wedge. Guides for performing lap welds, fin welds and hem welds, as well as many variations thereupon, are also disclosed.
Abstract:
A method of capturing and removing contaminant particles moving within an evacuated interior region of an ion beam implanter is disclosed. The steps of the method include: providing a particle collector having a surface to which contaminant particles readily adhere; securing the particle collector to the implanter such that particle adhering surface is in fluid communication to the contaminant particles moving within the interior region; and removing the particle collector from the implanter after a predetermined period of time. An ion implanter in combination with a particle collector for trapping and removing contaminant particles moving in an evacuated interior region of the implanter traversed by an ion beam is also disclosed, the particle collector including a surface to which the contaminant particles readily adhere and securement means for releasably securing the particle collector to the implanter such that the particle adhering surface is in fluid communication with the evacuated interior region of the implanter.
Abstract:
An ion implantation device equipped with a high-speed driving device which causes rotation of the a disk that supports semiconductor wafers around it outer periphery. A center position of the disk is the axis of the rotation of the high speed rotation. A low-speed driving device causes relative movement of the disk in a radial direction. The ion implantation device further has a control circuit which calculates the movement speed of the aforementioned low-speed driving device with reference to different spacings between wafers about the outer periphery and the distance from the center of the disk to the ion implantation position, and controls said low speed scan speed so that ions are uniformly implanted into the aforementioned wafers.
Abstract:
A biological treatment system and method is provided for treating wastewater from a treatment plant which provides primary and secondary treatment. An aggregate-filled bed enclosed by a water-impervious barrier is used to receive and cleanse the wastewater using the roots of turf grass grown on the top of the bed. Wastewater is introduced near the bottom of the bed and flows generally upwardly through the voids in the media, passing through the root system of the turf grass. Wastewater is withdrawn from the bed at a higher level than it is introduced. The top surface of the bed remains dry and is capable of supporting pedestrian and vehicular traffic. A recirculation system maintains the generally upward flow of water through the bed. Transpiration reduces the volume of the wastewater and the biological cleansing action of the roots cleanses the wastewater. Alternative forms of the bed are described.
Abstract:
A system and method for maintain a desired degree of platen flatness is disclosed. A laser system is used to measure the flatness of a platen. The temperature of the platen is then varied to achieve the desired level of flatness. In some embodiments, this laser system is only used during a set up period and the resulting desired temperature is then used during normal operation. In other embodiments, a laser system is used to measure the flatness of the platen, even while the workpiece is being processed.
Abstract:
A current lead with a configuration to reduce heat load transfer in an alternating electrical current (AC) environment is disclosed. The current lead may comprise a conductive material having a configuration for reducing heat load transfer across the current lead when an alternating electrical current (AC) is applied to the current lead. A temperature gradient a may be exhibited along a length of the current lead.
Abstract:
An ion source that utilizes exited and/or atomic gas injection is disclosed. In an ion beam application, the source gas can be used directly, as it is traditionally supplied. Alternatively or additionally, the source gas can be altered by passing it through a remote plasma source prior to being introduced to the ion source chamber. This can be used to create excited neutrals, heavy ions, metastable molecules or multiply charged ions. In another embodiment, multiple gasses are used, where one or more of the gasses are passed through a remote plasma generator. In certain embodiments, the gasses are combined in a single plasma generator before being supplied to the ion source chamber. In plasma immersion applications, plasma is injected into the process chamber through one or more additional gas injection locations. These injection locations allow the influx of additional plasma, produced by remote plasma sources external to the process chamber.
Abstract:
Techniques for improving extracted ion beam quality using high-transparency electrodes are disclosed. In one particular exemplary embodiment, the techniques may be realized as an apparatus for ion implantation. The apparatus may comprise an ion source for generating an ion beam, wherein the ion source comprises a faceplate with an aperture for the ion beam to travel therethrough. The apparatus may also comprise a set of extraction electrodes comprising at least a suppression electrode and a high-transparency ground electrode, wherein the set of extraction electrodes may extract the ion beam from the ion source via the faceplate, and wherein the high-transparency ground electrode may be configured to optimize gas conductance between the suppression electrode and the high-transparency ground electrode for improved extracted ion beam quality.