Abstract:
In accordance with disclosed embodiments, there are provided systems, methods, and apparatuses for implementing a high mobility low contact resistance semiconducting oxide in metal contact vias for thin film transistors. For instance, there is disclosed in accordance with one embodiment an oxide semiconductor transistor, having therein: a substrate layer; a channel layer formed atop the substrate; a metal gate and a gate oxide material formed atop the semiconducting oxide material of the channel layer; spacers positioned adjacent to the gate and gate oxide material; a dielectric layer formed atop the channel layer, the dielectric layer encompassing the spacers, the gate, and the gate oxide material; contact vias opened into the dielectric material forming an opening through the dielectric layer to the channel layer; a high mobility liner material lining the contact vias and in direct contact with the channel layer, the high mobility liner formed from a high mobility oxide material; and metallic contact material filling the contact vias opened into the dielectric material and separated from the channel layer by the high mobility liner of the contact vias. Other related embodiments are disclosed.
Abstract:
Embodiments of the invention include non-planar InGaZnO (IGZO) transistors and methods of forming such devices. In an embodiment, the IGZO transistor may include a substrate and an IGZO fin formed above the substrate. Embodiments may include a source contact and a drain contact that are formed adjacent to more than one surface of the IGZO fin. Additionally, embodiments may include a gate electrode formed between the source contact and the drain contact. The gate electrode may be separated from the IGZO layer by a gate dielectric. In one embodiment, the IGZO transistor is a fmfet transistor. In another embodiment the IGZO transistor is a nanowire or a nanoribbon transistor. Embodiments of the invention may also include a non-planar IGZO transistor that is formed in the back end of line stack (BEOL) of an integrated circuit chip.
Abstract:
An apparatus including a non-planar body on a substrate, the body including a channel on a blocking material, and a gate stack on the body, the gate stack including a first gate electrode material including a first work function disposed on the channel material and a second gate electrode material including a second work function different from the first work function disposed on the channel material and on the blocking material. A method including forming a non-planar body on a substrate, the non-planar body including a channel on a blocking material, and forming a gate stack on the body, the gate stack including a first gate electrode material including a first work function disposed on the channel and a second gate electrode material including a second work function different from the first work function disposed on the channel and on the blocking material.
Abstract:
A subfin layer is deposited in a trench in an insulating layer on the substrate. A fin is deposited on the subfin layer. The fin has a top portion and opposing sidewalls. The fin comprises a first semiconductor material. The subfin layer comprises a III-V semiconductor material.
Abstract:
An interlayer is used to reduce Fermi-level pinning phenomena in a semiconductive device with a semiconductive substrate. The interlayer may be a rare-earth oxide. The interlayer may be an ionic semiconductor. A metallic barrier film may be disposed between the interlayer and a metallic coupling. The interlayer may be a thermal-process combination of the metallic barrier film and the semiconductive substrate. A process of forming the interlayer may include grading the interlayer. A computing system includes the interlayer.
Abstract:
Transistors suitable for high voltage and high frequency operation. A nanowire is disposed vertically or horizontally on a substrate. A longitudinal length of the nanowire is defined into a channel region of a first semiconductor material, a source region electrically coupled with a first end of the channel region, a drain region electrically coupled with a second end of the channel region, and an extrinsic drain region disposed between the channel region and drain region. The extrinsic drain region has a wider bandgap than that of the first semiconductor. A gate stack including a gate conductor and a gate insulator coaxially wraps completely around the channel region, drain and source contacts similarly coaxially wrap completely around the drain and source regions.
Abstract:
Embodiments of the invention include nanowire and nanoribbon transistors and methods of forming such transistors. According to an embodiment, a method for forming a microelectronic device may include forming a multi-layer stack within a trench formed in a shallow trench isolation (STI) layer. The multi-layer stack may comprise at least a channel layer, a release layer formed below the channel layer, and a buffer layer formed below the channel layer. The STI layer may be recessed so that a top surface of the STI layer is below a top surface of the release layer. The exposed release layer from below the channel layer by selectively etching away the release layer relative to the channel layer.
Abstract:
Aspect ratio trapping (ART) approaches for fabricating vertical semiconductor devices and vertical semiconductor devices fabricated there from are described. For example, a semiconductor device includes a substrate with an uppermost surface having a first lattice constant. A first source/drain region is disposed on the uppermost surface of the substrate and has a second, different, lattice constant. A vertical channel region is disposed on the first source/drain region. A second source/drain region is disposed on the vertical channel region. A gate stack is disposed on and completely surrounds a portion of the vertical channel region.
Abstract:
Embodiments of the disclosure described herein comprise a tunneling field effect transistor (TFET) having a drain region, a source region having a conductivity type opposite of the drain region, a channel region disposed between the source region and the drain region, a gate disposed over the channel region, and a heterogeneous pocket disposed near a junction of the source region and the channel region. The heterogeneous pocket comprises a semiconductor material different than the channel region, and comprises a tunneling barrier less than the bandgap in the channel region and forming a quantum well in the channel region to in crease a current through the TFET transistor when a voltage applied to the gate is above a threshold voltage.
Abstract:
A single fin or a pair of co-integrated n- and p-type single crystal electronic device fins are epitaxially grown from a substrate surface at a bottom of one or a pair of trenches formed between shallow trench isolation (STI) regions. The fin or fins are patterned and the STI regions are etched to form a height of the fin or fins extending above etched top surfaces of the STI regions. The fin heights may be at least 1.5 times their width. The exposed sidewall surfaces and a top surface of each fin is epitaxially clad with one or more conformal epitaxial materials to form device layers on the fin. Prior to growing the fins, a blanket buffer epitaxial material may be grown from the substrate surface; and the fins grown in STI trenches formed above the blanket layer. Such formation of fins reduces defects from material interface lattice mismatches.